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Abstract

Adopting E. Parzen’s ideas of 1979, we assume that the density-quantile function fo F~1 is
continuous on (0, 1) and regularly varying in neighbourhoods of 0 and 1. Under this assumption
we then prove strong and weak limit theorems for the general Bahadur-Kiefer and quantile
processes. In particular, our investigations provide a new look at results obtained by G.R.
Shorack in 1972, as well as throw a new light on those previously proved under a condition
introduced by M. Csorgé and P. Révész in 1978. The problem of constructing asymptotic
confidence bands for the general quantile function F~1 is also discussed in detail, and in a
historical context as well. Furthermore, the above mentioned results concerning the general
Bahadur-Kiefer and quantile processes play a decisive role when investigating the asymptotic
behaviour of the general Vervaat process V,,. The herein obtained strong and weak convergence
results for the process V,, supplement and generalize the only known results so far in the area
that were obtained by W. Vervaat in 1972.

1 Introduction and some results

Let X be a random variable with distribution function F. The quantile function F~1 of F'is defined
as follows
F7H) =infl{z: Flz)>t}, 0<t<l.

Let X1, ..., X, be independent copies of X, and let F},, denote the empirical distribution function
1 n
Fo(x) = — HX, <z}, —oco<z<oo,
()=, LT <)

where I denotes the indicator function. The corresponding (general) empirical and quantile pro-
cesses are defined, respectively, as follows

Bn(x) = Fp(x) — F(z), —o00 <z <00, (1.1)
Yu(t) = F7N ) — F7Y(1), 0<t<1, (1.2)
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where F71 is the left-continuous inverse F; '(z) := inf{x: F,(z) >t} of F,.

Remark 1.1 Traditionally, it is the normalized versions \/n3, and \/nvy, that are called, respec-
tively, the empirical and quantile processes. We do not follow this tradition in the current paper
for the sake of avoiding re-normalizations of already normalized processes. Thus, in the current
paper, we will normalize all the processes only once, when needed. [

Throughout the paper we assume that the distribution function F'is continuous. Therefore, the
random variable U := F(X) is (0, 1)-uniform, and so are also the following independent random
variables Uy := F(X1), ..., U, := F(X,). The corresponding (0, 1)-uniform empirical and quantile
processes are defined, respectively, as follows

BY) = Bn(t) —t, 0<t<1,
T (t) = BN ) —t, 0<t<1, (1.4)

where E, is the empirical distribution function corresponding to Us,...,Uy,, and E; ! is its left-
continuous inverse.

An application of the Taylor formula suggests that the balanced quantile process f o F~ln,
should asymptotically behave like the (0, 1)-uniform quantile process Y. M. Csérgé and Révész
(1978), in combination with M. Csorgd, S. Csorgd, Horvath and Révész [CsCsHR] (1984), estab-

lished the following theorem.

Theorem 1.1 [M. Csorgd and Révész, 1978, CsCsHR, 1984] Let

i) the distribution function F be twice differentiable on its support (a,b), where a := sup{z :
F(x) =0} and b .= inf{x: F(z) =1},

ii) the density function f:= F' be positive on (a,b),

i) the bound
|[f" o F~H(1)]
t(1—t¢ <
20 e =7

hold true for some finite v > 0.

Then there exists a finite constant C < oo such that the following two statements

lim sup n{log log n}_(HV) sup |foF 1y, —4Y1<C as.
n—00 [1/(n+1),n/(n+1)]
lim sup n{log logn} =~ {log n}_(HE)(V_l) sup |foF 1y, —4Y| <C as.,

[1/(n+1),n/(n+1)]

hold true provided that, respectively, v <1 and v > 1, where ¢ > 0 is any fixed number.

In the following theorem the rates of convergence of the processes fo F =1, —~Y are considered
uniformly over the interval (0, 1).
Throughout the paper we use || || to denote the sup-functional sup{| -| : ¢ € (0,1)}.

Theorem 1.2 [M. Csorg6 and Révész, 1978| In addition to conditions i), ii) and iii) of Theorem
1.1 we also assume that

iv) the two limits A .= limg, f(x) and B :=limgyy, f(x) are finite.
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If
iv-a) both limits A and B are positive,

then there exists o finite constant C < oo such that

limsupn{loglogn}~!||f o F 1y, —J|| < C as.
n—oo

If, however,

iv-b) the limit A = 0 (resp., B = 0), then we assume also that the density function f is non-
decreasing on a right-neighbourhood of a (resp., non-increasing on a left-neighbourhood of

b).
Then there exists a finite constant C < oo such that the following three statements

limsupn{loglogn}™!|fo F 'y, —7Y| < C as.,
n—oo

limsupn{loglogn}~2||fo F 'y, —7Y|| < C as.,
n—oo

limsupn{loglogn}~"{logn} =00 =V| fo Fly, — 4| < C as.
hold true provided that, respectively, v <1, v =1 and ~v > 1, where € > 0 is any fized number.

Our reason for spelling out the conclusions of Theorem 1.1 under the conditions i), ii) and iii)
is to call attention to the fact that under these conditions one can already accommodate all the
jumps of the processes v, and vV, and thus successfully relate all the empirical quantiles of v, to
those of its uniform version 7 over the sequences of expanding intervals [1/(n + 1),n/(n + 1)].
The additional conditions on the density function f as in iv-a) and iv-b) of Theorem 1.2 are needed
only for the sake of further smoothing the “theoretical tails” near the end-points a and & of the
support of F, which in turn help us to conclude the following Corollaries 1.1 and 1.2.

Corollary 1.1 [M. Csorg6 and Révész, 1978| Under the conditions of Theorem 1.2, the statement

n
J————f o F iy, .S. 1.5
210glognfo Tn Haus (15)

holds true with respect to || - || on D|0,1|, where H is the Finkelstein (1971) class of all absolutely
continuous functions h on [0,1] such that h(0) = 0 = h(1) and [} {h'(s)}?ds < 1.

The notation ~» used above in (1.5) stands for saying that for almost all elementary events w

the set I' := {y/n/(2loglogn)f o F~1v,(-,w) : n € N} is relatively compact in the space D0, 1]
equipped with the sup-norm || - ||, and the set of all limit points of T is H.

Corollary 1.2 [M. Csorg6 and Révész, 1978] Under the conditions of Theorem 1.2, the statement
VnfoF ln, —4B (1.6)

holds true in the space D0, 1] endowed with the Skorohod Jy topology, where B is a Brownian bridge
on [0,1].



Statements (1.5) and (1.6) constitute two basic results upon which estimation of the quantile
function F~! and its various functionals of interest are usually built on (cf. Section 3 below for
more details on the subject). The importance of quantiles in the statistical sciences has been
discussed by Bahadur (1966), Bickel (1967), Chernoff, Gastwirth and Jones (1967), Kiefer (1967,
1970), Shorack (1972a,b), Parzen (1979a,b,c, 1980), M. Csorgé and Révész (1978, 1981), Davis
and Steinberg (1986), M. Csorg6 (1983, 1986), Eubank (1986), Heyde (1986), Shorack and Wellner
(1986), M. Csorgd, S. Csorgé and Horvéath [CsCsH|(1986), M. Csorgé and Horvéath (1993), and
Zitikis (1998), among many others. Naturally, establishing as weak as possible assumptions under
which statements (1.5) and (1.6) continue to hold true is of interest and practical importance.
Therefore, in order to understand the global role of the full set of conditions on /" in both Corollaries
1.1 and 1.2, as well as to find out to what extent these conditions can be relaxed, we shall now
outline proofs of these two corollaries.

The proofs of both corollaries start with the following fundamental result of Kiefer (1970): The
statement

limsup n*/*{loglogn}~"*{logn} " "?|RY|| = 274 a.s. (1.7)

holds true, where
Ry = + 0,
denotes the (0, 1)-uniform Bahadur-Kiefer process. (We also refer to Shorack, 1982, for a short and

insightful proof of statement (1.7).) Consequently, under the assumptions of Theorem 1.2 we have
(cf. M. Csorgd and Révész, 1978) that the general Bahadur-Kiefer process

Ro:=fo Fly, + 6,
is such that

limsup n*/*{loglog n} "V *{logn} V2| Ra|| = 274 a.s. (1.8)

n—oo

If we now combine statement (1.8) with the following Finkelstein’s (1971) law of the iterated

logarithm [LIL|
L U
\ 210glognﬁn ~H as. (1.9)

that holds true with respect to || || in D[0, 1], then we shall obtain Corollary 1.1. On the other
hand, if we combine statement (1.8) with the following Donsker’s (1952) result

VnBl —a B (1.10)

that holds true in the space D[0,1] endowed with the Skorohod .J; topology, then we shall get
Corollary 1.2.

It is obvious from the above discussion that the respective proofs of statements (1.5) and (1.6)
do not need such fast rates of convergence of || f o F~1~, —~Y]| to 0 as those given in Theorem 1.2,
nor even those of statement (1.8) either. We though note in passing that the latter statement is
of independent interest and proving it under the assumptions of Theorem 1.2 was one of the main
motivations of M. Csorgé and Révész (1978). As to concluding statements (1.5) and (1.6), it is
easy to see that one only needs to establish the following two statements:

n'/?{loglogn}='2(|f o F~ 'y, — 4[| —a.s. 0, (1.11)
n'2)f o F 'y =i | =P O, (1.12)



when n — oo. Since the respective rates of convergence to 0 of || fo F'~1, —~Y | in both statements
(1.11) and (1.12) are considerably slower than those stated in Theorem 1.2, one can therefore expect
to have both statements (1.11) and (1.12) under weaker assumptions on F' than those inherited
from Theorem 1.1 for proving them. We are now to demonstrate this fact in our Theorem 1.3
below.

Given two functions g1 and ga, we use the notation g1(t) < ga(t), ¢ — to, if both statements
lim sup;_, [91(t)/g2(t)] < oo and limsup,_;, |g2(t)/g1(t)| < oo hold true.

Assumption 1.1 Let the distribution function F' be absolutely continuous, and let the density-
quantile function fo F~1 be

v) continuous on the open interval (0, 1),
vi) (strictly) positive on the open interval (0, 1),

vil) such that the relations

Fo Fl(1) xtTlSl(%), L10, (1.13)
foF Y )= (1 4)7252(1 7t), t71, (1.14)

hold true for some numbers 71,72 > 0 and some slowly varying functions S7,S52. If ;| = 0
(resp., 72 = 0), then we assume S1(3) =< 1 when ¢ | O (resp., So(13;) =< 1 when ¢ T 1).

If it is not stated explicitely otherwise, Assumption 1.1 is assumed throughout the paper.

Assumption 1.1 was inspired by results and discussions in Shorack (1972a, b), M. Csorgd and
Révész (1978), Parzen (1979a,b,c, 1980), CsCsHR (1984), M. Csorgd and Horvéath (1993). It is
interesting to note that Assumption 1.1 is essentially the same as assumption iii) of Theorem 1.1,
though the advantage of Assumption 1.1 is that it does not require twice differentiability of F.
Indeed, since the value of v > 0 of assumption iii) becomes irrelevant when deducing the validity
of statements (1.11) and (1.12) via Theorem 1.1, assumption iii) in this context therefore reduces
to the following one
|(d/dt)f o F71(1)]

PNV e O B
Oiliglt(l t)foF—l(t)Q 7os<%£)1t(1 t) o F1(1) < o0. (1.15)

Furthermore, upon noticing that assumption (1.15) is, in fact, an assumption on the tails of the
density-quantile function f o F~1, it can be reformulated as the following two assumptions

|(d/dt)f o F~(2)]

T1 = lingl%upt o F1(1) < 00, (1.16)
s  pld/dt)f o FT()]
Ty 1= thlﬁup(l t) o F1(1) < o0. (1.17)

Discussions and results in Parzen (1979a,b,c, 1980), Seneta (1976), and Bingham, Goldie and
Teugels [BGT| (1987) show that assumptions (1.16) and (1.17) with F' twice differentiable carry
essentially the same message as Assumption 1.1 without twice differentiability of F'.



Theorem 1.3 Both statements (1.11) and (1.12) hold true. Equivalently, the following two state-
ments

n'/*{loglogn}™"/2|| Ral| —a.s. 0, (1.18)
n'2(|Ra|| —p 0 (1.19)

hold true when n — oo.

Statements (1.18) and (1.19) taken together with the above mentioned Finkelstein (1971) and
Donsker (1952) results (cf. statements (1.9) and (1.10), respectively) immediately imply the fol-
lowing corollary.

Corollary 1.3 Strassen’s type LIL (cf. statement (1.5)) for, and convergence in distribution (cf.
statement (1.6)) of, the general quantile process f o F~1v, hold true.

Further to our discussion given just below Theorem 1.2 about the conditions of Theorem 1.1
versus the additional ones of Theorem 1.2, we note that for concluding only what we want now,
namely, (1.18)-(1.19) and hence also Corollary 1.3, the conditions of Assumption 1.1 replace those
of Theorems 1.1 and 1.2 at a stroke.

In addition to the strong limit theorem (1.7), Kiefer (1970) also proved the following funda-
mental statement

n®(logn) ||| —a /|18l (1.20)
when n — oo. In fact, more generally, Kiefer (1970) proved
Tim n*4(logn) V|| B [|//1B]| —p 1 (1.21)

and announced also, without publishing his proof, that the latter result holds almost surely as well.
The first published proof of this almost sure version was given by Deheuvels and Mason (1990).
The latter paper also has a complete survey of the developments in the area.

In words, statement (1.20) says that the appropriately normalized sup-functional || || of the
(0, 1)-uniform Bahadur-Kiefer process RY converges in distribution to the non-degenerate random
variable \/||B||. Tt is interesting to note, however, that there can be no convergence in distribution
of the Bahadur-Kiefer process RY itself. This fact follows for example from comparing results of
Kiefer (1967,1970) on the pointwise and sup-norm behaviour of RY. It was formally proved first
by Vervaat (1972b), and we record it here for our convenience as the next theorem.

Theorem 1.4 |Vervaat, 1972b| The statement
anRY —q Y (1.22)

cannot hold true in the space D|0,1| for any sequence {an} of positive real numbers and any non-
degenerate random element Y of D|0,1].

In a very elegant way, Vervaat (1972b) based his proof of the latter result on the following
theorem.



Theorem 1.5 [Vervaat, 1972a] When multiplied by n, the process
t

Vf@::/}%@ma 0<t<1,
0

converges in distribution to %BQ, that is to say, the statement
VY —, B (1.23)
holds true in the space C|0,1]| endowed with the topology of uniform convergence.

Having statement (1.23), Vervaat (1972b) argues that if statement (1.22) were true, then, using
the Type Convergence Theorem [TCT] (cf., for example, Section 8.5 in BGT (1987) for results and
references on the subject), one would then be able to replace a, in (1.22) by n and, on account of
Vervaat’s statement (1.23), one would then have the equality

[ ] 1 2
/ Y (s)ds —q = B2 (1.24)
0 2

But the Brownian bridge B is a.s. nowhere differentiable and, consequently, the relation (1.24)
cannot be true. Therefore, statement (1.22) cannot be true either. We conclude this paragraph with
noting that M. Csorgé and Shi (1998) recently proved that the rate of convergence in distribution of
the Ly-norm of the Bahadur-Kiefer process differs from that of the sup-norm of the Bahadur-Kiefer
process in such a way that both simultaneously cannot be implied by having the statement of (1.22)
with any sequence {a,}. The latter fact obviously implies yet another proof of Theorem 1.4.

When investigating Strassen’s LIL for the so-called Lorenz process, M. Csorgdé and Zitikis
(1996a) introduced, and used in a decisive way, the following process

t F1(¢)
Vi(t) ::/ %(s)der/ Bu(w)de, 0<t<1.
0 —00

It is easy to check that if F'is absolutely continuous, then the representation

Vi (1) — /0 " Ro()dF(s)

holds true for all 0 < ¢ < 1. Therefore, it now becomes obvious that in the (0, 1)-uniform case the
process V,, equals to the process VU that was introduced and investigated by Vervaat (1972a,b).
Therefore, we called the process V,, the (general) Vervaat process and, consequently, V.V the (0, 1)-
uniform Vervaat process (cf. Zitikis, 1998, for more mathematical and historical details on the
subject).

The law of the iterated logarithm for, and convergence in distribution of, the (general) Vervaat
process V,, can easily be deduced from the following theorem concerning the process

Y, := foF 'V, - %{@[{}2.

Theorem 1.6 The following two statements

n

g Il = 0 (1.25)

n [ Tnll =P 0 (1.26)

hold true when n — oo.



Even though (under more stringent assumptions on F') one can obtain faster rates of conver-
gence to 0 of the sup-functional || - || of the process Y,, statements (1.25) and (1.26) are exactly
the statements that are needed to deduce the following two corollaries concerning, respectively,
Strassen’s type LIL for, and convergence in distribution of, the (general) Vervaat process V;,.

Corollary 1.4 We have
n

foF YW, ~H? as.
loglogn

with respect to || - || on C[0,1], where H? := {h*: h € H}.

Corollary 1.5 We have
2nf o v, -, B?

in the space C10, 1] endowed with the topology of uniform convergence.

In the (0, 1)-uniform case Corollary 1.4 was first proved by Vervaat (1972a), and Corollary 1.5
in this case coincides with Theorem 1.5. In the general case but under stronger requirements than
those of Assumption 1.1, statement (1.25) and Corollary 1.4 were proved in M. Csorgé and Zitikis
(1996b).

To conclude this section we note that the process Y,, plays a similar role in the asymptotic
theory of the Vervaat process V,, as the Bahadur-Kiefer process R,, does in the asymptotic theory
of the quantile process 7,. Namely, both of them are used to convert “difficult” processes V,
and v, into “easy” processes %{@[{ }? and BY, respectively. Therefore, just like in the case of the
Bahadur-Kiefer process R, (cf., for example, Bahadur, 1966, Kiefer, 1967, 1970; M. Csorgd and
Révész, 1978; CsCsHR, 1984; Deheuvels and Mason, 1990, Ralescu, 1992, 1995, 1996; Shi, 1996,
1997), it may be of independent interest to obtain exact rates of strong and weak convergence for
the appropriately normalized L,- and sup-functionals of the process Y, and also of the processes

1
Y= fo T Vot 5By f o F o,
o= o F W olf o F o)
as well as for the pointwise asymptotic behaviour of these three processes. In the (0, 1)-uniform
case, all of these problems have already been solved. For example, the following theorem, which
parallels the results of Kiefer (1967, 1970) concerning the Bahadur-Kiefer process RY, gives a

complete description of the pointwise behaviour of the (0, 1)-uniform version TY of the process T,
and also of the corresponding (0, 1)-uniform versions of the processes Y?* and Y.

Theorem 1.7 [Cséki, M. Csorgd, Foldes, Shi, and Zitikis, 1999 For every fized t € (0,1), we have

1

() —a 55 (0 - ) IG(1Gal), (1.27)
1

O] —a g (11— )Gl (1G], (1.28)

when n — oo, where G1 and G2 are independent standard Gaussian random variables, and we also
have
nd/4 97/431/4

lim sup Wwf{ ()] = (t(1 —1))** RS (1.29)




As to complete descriptions of the asymptotic behaviour of the sup- and L,norms of the process
TV, we refer, respectively, to Csaki, M. Csorgs, Foldes, Shi, and Zitikis (1999) and M. Csorgé and
Zitikis (1999a). A survey of the just mentioned results can be found in M. Csérgé and Zitikis
(1999b).

The rest of this paper is organized as follows. In our next Section 2 we formulate without proofs
two a.s. bounds for the process R, (cf. Theorems 2.1 and 2.2) and one a.s. bound for the process
T, (cf. Theorem 2.3). It is then demonstrated in Section 2 that these three bounds imply both
Theorems 1.3 and 1.6, which are, by the way, the only results of Section 1 that remain to be proved.
We also note at the outset that Theorems 2.1-2.3 are more general results than those one really
needs to have in order to derive Theorems 1.3 and 1.6. A justification for this generality is given
in Section 3, where we discuss various constructions of confidence bands for the quantile function
F~1 In Section 3 we also investigate weighted versions of some of the results of Section 1. Section
4 is devoted to proving Theorems 2.1-2.3.

2 Proofs of the results of Section 1 via further results of interest

The only results of Section 1 that require proofs are Theorems 1.3 and 1.6. We denote
6n :=n"tloglogn

and start with the following auxiliary theorem that, together with Theorems 2.2 and 2.3 of this
section, will be proved in Section 4.

Theorem 2.1 For any d > 0 and € > 0, and for some €1 > 0, the following bound
e
|Ra(t)] < ct37(1 — )2 TIn(6, e, 1) + ctTA3=VO(1 — ) (mAg=VOg2 iy 4 o (1))
(2.1)
holds true for all t € (0,1), where
e the constant ¢ does not depend on 6, n and t,

e 0,5 (1) stands for a random variable which does not depend on t, but may depend on §, € and
€1, and which converges to 0 almost surely when n — oo,

e the quantity 11,,(0,€,€1) on the right-hand side of (2.1) is defined as follows

+e1

1
(8¢, €1) i = (185 || 0as. (1) + esl| B[+ 02 {1+ 0a.6.(1)}

U U
Tn (8) B (1)
+ 5€< sup _— sup ——————] 1 + 0q4.s. 1 s
1€(258,,1—256,] | VE(L — )| 1€256n,1-256,] | VE(1 — 1) { (1}

where the constant cs may depend on & but not onn and t.

If we bound ¢ and 1 — ¢ by 1 on the right-hand side of (2.1), then we obtain the following
corollary.

Corollary 2.1 For any 0 > 0 and € > 0, and for some ¢1 > 0, the following bound
[ Bnll < clln(d, € €1) (2.2)

holds true for a constant ¢ which does not depend on § and n.



Corollary 2.1 is sufficient to deduce both statements (1.18) and (1.19). We are now to demon-
strate this fact.

Proof of Theorem 1.3. Using the bound

7 ()

lim sup 5_1/2< sup 7‘ + su
(1 —t)|  te[256n,1—256,]

n
t€[256,,,1—258, ]

B (1)
7@ ) <c¢ as. (2.3)

(cf. Csdki, 1977, M. Csorgé and Révész, 1978, for more precise results), we obtain that

n—oo

lim sup 5;1/211”(5, €,€1) <0 a.s.

n—oo

Letting & > 0 converge to 0 through rational points, we immediately get from bound (2.2) that

the statement limsup o, ?|Ra]l = 0 a.s. holds true. Statements (1.18) and (1.11) are therefore
proved.
In an analogous way but now using the following statement (cf. M. Csorgd and Horvath, 1993,

for details, proofs and references)

Y (t)

1/2( ‘
n sup + su
tL =) te[256,,1-256,]

t€[258,,,1—258, ]

U
7% ) = or) (2.4)

instead of (2.3) , we arrive, via Corollary 2.1 again, at statements (1.19) and (1.12). This concludes
the proof of Theorem 1.3. [

We note in passing that the constant 25 in the above statements (2.3) and (2.4) can be replaced
by smaller ones (cf., for example, Shorack and Wellner, 1986, Einmahl and Mason, 1988, M. Csorgd
and Horvéth, 1993). However, an employment of such improvements in the present paper does not
seem to be useful for our current needs.

As we have just seen, bound (2.1) of Corollary 2.1 is sufficient for the sake of proving Theorem
1.3. In Theorem 2.1 we have a more general result than that of Corollary 2.1 that will be useful
in Section 3, where we discuss the important problem of constructing confidence bands for the
quantile function F~1. In Section 3 we shall also use, in a decisive way, the following theorem,
which in the context of the current section can be considered as a supplement to Theorem 2.1.

Theorem 2.2 For any § > 0 and ¢ > 0, and some ¢1 > 0, the following bound
IRn(t)] < ct7™5(1 — )2 T (6,€, €1), (2.5)
holds true for all t € [1/(n+1),n/(n+ 1)|, where the constant ¢ does not depend on §, n and t.

If we compare bounds (2.2) and (2.5), we shall notice that the restriction of ¢ values to the
interval [1/(n+1),n/(n+ 1)] as in Theorem 2.2 has removed the asymptotically dominant second
summand from the right-hand side of (2.1). This fact will play a decisive role in Section 3.

We are now to discuss Theorem 1.6 and its proof. To start with we formulate the following
theorem whose proof will be given in Section 4.

Theorem 2.3 For any § > 0 and ¢ > 0, and some €1 > 0, the following bound

ITa(t)] < ct'=<(1 — ) =M1,(6, €, €1) (2.6)
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holds true for all t € (0,1), and for a constant ¢ that does not depend on §, n and t. The quantity
11,(0,€,€1) on the right-hand side of (2.6) is defined as follows

(8. ¢, 1) =5 ({1 Ball + 1B G |+ Bl + 187 136524+ 1185 [P00.s.(1)

{ U
+5€1<te[255i1’11p_255”] % 2501250, \/%
U 2
i te[255i1711p_255n] % ){1 + 04.5.(1)}
o (5}1/2 tes(%l,)l) tl/Q—E/Qﬁg(ti)yg_e/g
 sup [ |} 00 )

+ 5711“10@.5.(1),

where the constant cs < oo may depend on 0 but not onn and t.

Proof of Theorem 1.6. It is easy to notice that in order to prove Theorem 1.6, one does not
really need to have bound (2.6). Indeed, for the sake of proving Theorem 1.6 it is enough to have
the following weaker bound

Iall < T1n(8, ¢, 0). (2.7)

Then statement (1.25) of Theorem 1.6 follows from (2.7) via using statements (1.18), (1.9), together
with the following two bounds

75 (t)

—|t+ sup
VI =) 1e[256,,1-256,]

lim sup o,, 1/2 ( sup
n—00 tE[256,,,1—256, ]

B (t)
7@ ) <c¢ a.s., (2.8)

B (1)

/2=</2(1 — )1/2=</2 =c¢ as. (2.9)

limsupd,; 172 sup
n—0o0 te(0,1)

(cf. Theorem 2 of M. Csorgé and Révész, 1978, and Theorem 3.2 on p.157 of of Cséki, 1977,
concerning (2.8), and Corollary 2 of James, 1975, concerning (2.9)). Statement (1.26) of Theorem
1.6 follows from (2.7) via using statements (1.19), 1.10), (2.4), and

B (1)
11/2=€/2(1 — {)1/2=</2

1/2

— 0p(1) (2.10)

n sup

te(0,1)

(cf. CsCsHM, 1986, and M. Csorgd and Horvath, 1993, for proofs and further details concerning
(2.10)). O

In Theorem 1.6 we obtained a sharper than necessary bound. This was done in order to describe
a class of weight functions ¢ that can be used to establish weighted versions of the process T,, and
also have weighted versions of statements of Theorem 1.6 hold true. Specifically, from bound (2.6)
we immediately deduce the following two corollaries.
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Corollary 2.2 If the weight function q satisfies the condition
git) >t (1 -, 0<t<l1, (2.11)

for some ¢ > 0 and € > 0, then the following two statements

n

loglogn ||Tn/Q|| a.s. 07 (212)

n [ Tn/qll —p 0 (2.13)
hold true when n — oo.

In turn, statements (2.12) and (2.13) imply the following corollary.

Corollary 2.3 [f the weight function q is continuous on (0, 1), non-decreasing on a right-neighbourhood
of 0, non-increasing on a left-neighbourhood of 1, and satisfies (2.11), then the following Strassen’s
type LIL

n -1 2N e B2/
loglognfOF Va/qa~ H(q) = {h"/q: h € H} a.s. (2.14)
holds true with respect to || - || on C|0,1], and the convergence-in-distribution statement
o2nfo F~YW, /q—qB%/q (2.15)

holds true in the space C|0,1]| endowed with the topology of uniform convergence.

A precise description of the class of functions ¢ such that statements (2.12)-(2.15) hold true still
remains an open problem whose solution is definitely not within the scope of the present paper.

3 Asymptotic confidence bands for the quantile function /!

As we indicated in the previous section, Theorem 2.1 can be used to obtain weighted versions
of both statements (1.18) and (1.19). The following theorem, which is an easy consequence of
Theorem 2.1, is such a result.

Theorem 3.1 If the weight function q is such that
g(t) > ctMPa=IVO(1 — )(PAg=V0 g <, (3.1)
for some ¢ > 0 and € > 0, then the following two statements

n'/*{loglogn}~"2||Ru/ql| —a.s. 0, (3.2)
n'?||Rn/ql| —p 0 (3.3)

hold true when n — oo.

Statements (3.2) and (3.3) easily imply the following theorem.
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Theorem 3.2 If the weight function q is continuous on (0, 1), non-decreasing on a right-neighbourhood
of 0, non-increasing on a left-neighbourhood of 1, and satisfies assumption (3.1), then the following

Strassen’s type LIL
_n -1 - .
2log lognf o F /g~ H(q) :={h/q: h e H} a.s. (3.4)

holds true with respect to || - || on D[0,1|, and the convergence-in-distribution statement
vif o F /g —a B/q (3.5)
holds true in D[0,1| endowed with the Skorohod J1 topology. The lalter statement, in turn, implies
Vi sup | o FH () ya(t)/a(t)] —a & = sup |B(t)/q(t)] (3.6)
t€(0,1) t€(0,1)

when n — oo.

Apart from its independent interest, statement (3.6) plays a decisive role in construction of
confidence bands for the quantile function F'~1. Specifically, let a € (0,1) be any fixed number,
and let

Zgo = inf{z: P{&{ <2} > 1 —al.

With this notation, statement (3.6) immediately implies the following corollary.

Corollary 3.1 If the weight function q is as in Theorem 3.2, then for any fivzed o € (0,1) the
statement

P e [F0 - SAE FO (3.7

holds true over the interval (0,1) with probability 1 — « + o(1) when n — oo.

The point z, does not depend on any unknown parameter and can therefore be tabulated for any
fixed weight function g. However, the confidence band in (3.7) is not readily applicable in practical
situation due to the factor f o F~!(¢) that needs to be estimated. Under additional assumptions
on f, the latter problem was investigated by M. Csorg6 and Révész (1984), Shorack and Wellner
(1986), M. Csorgd and Horvath (1993).

To a certain degree, the estimation of, and thus additional assumptions on, the density-quantile
function f o F~! can nevertheless be avoided by shifting, via the weight function ¢, the density
quantile function f o F'~1 from the left-hand side to the right-hand side of (3.6) . Specifically, let
the weight function g be qo, where

qo(t) == fo F7Y ()P (1 —t)=P?
and the parameters p; and po are such that

=0 if =0,
pi{ >0 if 0<7 <3, (3.8)
> T — % if > %
It is easy to check that under Assumption 1.1 the weight function ¢ = ¢g is such that assumption
(3.1) holds true. Furthermore, it is also easy to check that go > ¢1, where ¢; is a non-decreasing on
a right-neighbourhood of 0, non-increasing on a left-neighbourhood of 1, and is such that 1/¢; is
square integrable over (0,1). Consequently, using the last statement of Theorem 3.2, we conclude
the following result.
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Theorem 3.3 If the parameters p1 and pa are as in (3.8), then the statement

Vi sup (O (1~ 12 =4 &pypy(F) == sup B (1 —6)2/fo FTH(H)] (3.9)
te(0,1) t€(0,1)

holds true when n — oo.

Starting now with Theorem 3.3 instead of statement (3.6), we derive a somewhat different
confidence band than that given in Corollary 3.1. Namely, let o € (0,1) be fixed, and let

Zpypo,a () = inf{z 0 P{&p, p,(F) < 2} 21— af.
Then we have the following corollary.

Corollary 3.2 If the parameters p1 and pa are as in (3.8), then for any fixzed o € (0,1) the
statement

-1 -1 1 Zp1,pa,a(F) -1 1 Zp1,pa,a (1)
() € |y (t)*tm(l,t)pz NG » I (t)ﬂpl(l,t)pz NG (3.10)

holds true over the interval (0,1) with probability 1 — « + o(1) when n — oo.

Even though the (unknown) density-quantile function f o F~! has not been really removed
from the confidence band in (3.10) due to the point z,, p, «(F') still depending on f o F~1, the
estimation of the density-quantile function f o F~1 can nevertheless be avoided now by using, for
example, well-developed bootstrap methodologies (cf. M. Csorgd, S. Csorgd and Mason [CsCsM],
1984, CsCsH, 1986, S. Csorgd and Mason, 1989, M. Csorgd, Horvath and Kokoszka, 1998, for
bootstaping empirical and related processes) via Theorem 3.3.

Naturally, the values of parameters p; and ps are crucial for constructing as narrow as possible
confidence bands for F'~1 in neighbourhoods of 0 and 1. Since assumption (3.8) implies that both
p1 and pg are non-negative, in most cases the confidence band given in (3.10) expands when ¢ | 0
and ¢t T 0. Unfortunately, this problem cannot be easily resolved since, as it easy to see, assumption
(3.8) cannot be substantially relaxed without a modification of the original problem (3.3), or (3.5).
Thus, assumption (3.8) cannot be substantially relaxed either.

In our next theorem we demonstrate that restricting the values ¢ to the interval [1/(n+1),n/(n+
1)], we can relax assumption (3.8) significantly and in this way increase the range of values of pq
and po.

Theorem 3.4 If the paramelers p1 and po are such that

1
pi >Ti*§7 (3.11)
then the statement
Vn sup V(O (1 =) —a Epy,pa (F) (3.12)

te[1/(n+1),n/(n+1)]

holds true when n — oo, where &y, po (F) as in (3.9).

Similarly to the way we constructed the confidence band in (3.10), we now deduce from Theorem
3.4 the following corollary.
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Corollary 3.3 If the parameters p1 and ps are as in (3.11), then for any fived « € (0,1) the
statement (3.10) holds true over the expanding interval [1/(n +1),n/(n+ 1)] with probability 1 —
a+o(1) when n — co.

If we compare conditions (3.8) and (3.11), then we see that both of them coincide when 7; > 1.

However, condition (3.11) is weaker than (3.8) when 7; < 3.

We note in passing that the confidence bands for the quantile function F~! in Doss and Gill
(1992), that are appealing at the first sight, are obtained under the assumption that the density-
quantile function f o F~1 is continuous and (strictly) positive on the closed interval [0,1]. The
latter assumption implies, in particular, that the distribution function F' has a compact support.

More to the point along these lines, M. Csorgé and Horvath (1989) constructed confidence
bands for F~! even without the requirement of absolute continuity of the distribution function
F, though, naturally, not over the closed interval [0,1]. As an illustration of their results we now
formulate the following theorem.

Theorem 3.5 [M. Csorgé and Horvath, 1989] Let F' be continuous. Furthermore, let the weight
Junction q be continuous on (0,1), non-decreasing on a right-neighbourhood of 0, non-increasing on
a left-neighbourhood of 1, and such that

fager{- g < 19

for all € > 0. Then for any fized o € (0,1) the statement

P e B a0, Feran )] esi<ioa, (3.14)

NG NG
holds true with probability 1 — o+ o(1) when n — oo, where ¢, is any sequence of positive numbers
¢n — 0 such that \/ne, — .

We note in passing that the mere continuity of F' in Theorem 3.5 was achieved by M. Csorgd
and Horvath (1989) at the expense of restricting the values ¢ to the interval [¢,,1 — €,], whereas
the confidence bands of Corollaries 3.1-3.3 hold true either over the whole interval (0,1) or over
[1/(n+1),n/(n+1)]. All told, these facts reflect the complexity of the problem under investigation.
To conclude this remark, we note that in M. Csorgé and Horvéth (1989) the statement (3.14) was
actually proved for the weight function ¢(t) = 1 only. However, in view of CsCsHM (1986), the
incorporation of the weight function ¢ satisfying (3.13) for all € > 0 into the statement (3.14) is an
easy exercise.

The above discussion concerning confidence bands for F~! has demonstrated the importance
of statement (3.6) and that of its truncated version

Vn sup |fo F'v/ql —a sup |B/q| (3.15)
te[1/(n+1)<t<n/(n+1)] t€(0,1)

under various possible assumptions on ¢ vis-4-vis the density quantile function f o =1, We now
consider the validity of statement (3.15) in the indicated general form. The reason is that the
interval [1/(n + 1),n/(n + 1)], over which sup is taken on the left-hand side of (3.15), already
includes all the empirical information that is carried by F;! on F~1,

We continue our discussion with the following result of Shorack (1972b).
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Theorem 3.6 [Shorack, 1972b| Let the weight function q be continuous on (0,1), non-decreasing
on a right-neighbourhood of 0, non-increasing on a left-neighbourhood of 1, and such that

/01 {ﬁ}th < . (3.16)

Furthermore, let the density-quantile function f o F~1 be continuous and positive on the open
interval (0,1), and let the bound

|fo FTYOIR(M) =1, 0<t<1,

hold true for a non-increasing on a right-neighbourhood of 0, non-decreasing on a left-neighbourhood
of 1 function R such that for each 8 > 0 in a right-neighbourhood of O there is a constant Mg such
that the following two inequalities

R(5t) < MsR(0). (3.17)
RO 8(1 - 1)) < MsR() (3.18)

hold true for all t € (0,1). Furthermore, assume that the statement
fo F Y ORM)w(t) — 0 (3.19)

holds true when t | 0 and t T 1 for a continuous function v such that v(0) and v(1) = 0 and such
that

1 1 2
——— ¢ di < o0. 3.20
)i o) 320
Then statement (3.15) holds true.

We note in passing that condition (3.16) implies that of (3.13) (cf., for example, p. 27 of CsCsH,
1986). Hence, unlike in (3.14), however, we deal with taking sup over the interval [1/(n+1),n/(n+
1)]. In this regard, conditions (3.19) and (3.20) imply, in particular, that the more exactly we are
able describe the behaviour of the density-quantile function f o F~1(¢) when ¢ | 0 and ¢ 1 1, the
larger class of weight functions ¢ can be used in statement (3.15). In this sense the function v
defined in (3.19) and (3.20) can be interpreted as a penalty for the lack of information about the
behaviour of the density-quantile function f o F~1(¢) near 0 and 1.

Under more stringent assumptions on /' than those given in Theorem 3.6 above, M. Csorg6
(1986) and G.R. Shorack (cf. Theorem 2 on p. 642 in Shorack and Wellner, 1986) proved the
following theorem.

Theorem 3.7 [M. Csorgd, 1986; G.R. Shorack, 1986] Let assumptions i)-iii) of Theorem 1.1 hold
true, and let the weight function q be as in Theorem 3.5. Then statement (3.15) holds true.

Theorem 2.2 on p. 382 of M. Csoérgé and Horvath (1993) demonstrates that assumptions i)-iii)
lof Theorem 1.1] can be further weakened in Theorem 3.7. Namely, the following theorem holds
true.

Theorem 3.8 [M. Csorgd and Horvath, 1993] Let the density-quantile function f o F~1 be con-
tinuous and positive on (0,1), and let there exist two monotonous functions Ry and Ry satisfying
the following two sets of conditions:

o P10 Ra(t) = 1,
{ 7o (1) Ralt) > 1 (3.21)
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for all t € (0,1), and
lim sup,_q | f o F~1(t)|R1(5t) < oo, (3.22)
lim supy_y |f o F7H(#)[ Ra(1 — B(1 — 1)) < o0 '

Jor all 0 < B < oco. Then statement (3.15) holds true for any weight function q as in Theorem 3.5.

We note in passing that if the function R; satisfies condition (3.17) and Ro satisfies (3.18),
then conditions (3.21) and (3.22) essentially require the existence of monotonous functions that
bound the density-quantile function fo F~! in neighbourhoods of 0 and 1. Therefore, if we know
or assume that the density-quantile function f o F~! is monotonous in neighbourhoods of 0 and 1
(cf. assumption iv-b) of Theorem 1.2), then assumptions (3.21) and (3.22) are, of course, void. If
the density-quantile function fo F'~! is regularly varying (as in Assumption 1.1), then assumptions
(3.21) and (3.22) are satisfied since according to, for example, Theorem 1.5.3 of BGT (1987), every
regularly varying function has a monotone equivalent.

Theorem 3.1(v) on p. 386-387 of M. Csorgd and Horvath (1993) further relaxes the assumption
that (3.13) holds true for all € > 0 at the expense of strengthening, however, the requirements on
F, just like in Theorem 3.7. Thus the next theorem is to be compared to both Theorems 3.7 and
3.8.

Theorem 3.9 [M. Csorgé and Horvath, 1993] Let assumptions i)-iii) of Theorem 1.1 hold true.
Furthermore, let the function q be continuous on (0,1), non-decreasing on a right-neighbourhood of
0, non-increasing on a left-neighbourhood of 1, and such that the assumption (3.13) is satisfied for
some € > 0. Then statement (3.15) holds true.

The requirement that assumption (3.13) in Theorem 3.9 holds true for some € > 0 cannot be
relaxed, since this requirement is necessary and sufficient for the existence of the limiting non-
degenerate random variable supic( 1y [B/q| (cf. CsCsHM, 1986, Shorack and Wellner, 1986, M.
Csorgd, Shao and Szyszkowicz [CsShSz|, 1991, M. Csorgd and Horvath, 1993).

We are now to give a few remarks concerning the so-called first type Vervaat problem that aims
at describing the asymptotic behaviour of inverted processes via the known or assumed asymp-
totic behaviour of the original processes. (The second type Vervaat problem aims at describing
the asymptotic behaviour of integrals of inverted processes such as, for example, the process V,
investigated in previous sections; cf. Zitikis, 1998, for a survey on the subject.) In great detail and
with numerous examples and applications in diverse fields of mathematics and the mathematical
sciences, the first type Vervaat problem was initiated and investigated by Vervaat (1972a,b). Whitt
(1980) made further far-reaching contributions in the area. Ralescu and Puri (1996) obtained, to
the best of our knowledge, the most complete and general solution of the first type Vervaat prob-
lem, and accompanied their solution with a number of examples of importance in diverse areas of
Probability Theory and Mathematical Statistics.

Since inverted processes are at least as important in statistical sciences as non-inverted ones,
there has been an increasing interest in obtaining as general solutions of the first Vervaat problem
as possible. The work by Doss and Gill (1992) is sometimes considered as one of the most important
contributions in the area. While it is succinct in their context, we note that Doss and Gill (1992)
base their considerations in general on their result which says, in particular, that if the density-
quantile function fo F~1is

e continuous on the closed interval [0, 1],

e (strictly) positive on the closed interval [0, 1],
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then the statement

B

\/E{Fn_l - F_l} —d *W (3.23)

holds true. However, as we already indicated above, these assumptions that clearly yield statement
(3.23) are very restrictive for general use, since they exclude all distribution functions with non-
compact supports.

To conclude this section we note that, to the best of our knowledge, it was Shorack (1972b) (cf.,
for example, Theorem 3.6 above) who gave the first and remarkably general solution of the first
Vervaat problem, as we call the problem nowadays. Theorems 3.1-3.5 and 3.7-3.9 are examples of
further developments in the area and give a fairly exhaustive solution to the problem in hand.

4 Proofs of the theorems of Section 2

In this section we prove a number of lemmas from which Theorems 2.1-2.3 follow. In particular,
Lemmas 4.1-4.3 imply Theorem 2.2. Lemma 4.4 together with Theorem 2.2 imply Theorem 2.1.
Finally, Lemmas 4.5-4.8 imply Theorem 2.3.

We assume throughout this section that Assumption 1.1 holds true. We also recall that o4.5.(1)
stands for random variables which do not depend on ¢t and converge to 0 almost surely when n — oo
(cf. the formulation of Theorem 2.1 for complete details).

Lemma 4.1 Bound (2.5) holds true for all t € [5,1 — d], where § > 0 is an arbitrary but fived
number.

Proof. Since Fi;1 = F~'o E-Y and (d/ds)F~'(t) = 1/f o F~1(t), the Taylor formula implies the
representation

Fa P00 20 50 [ { L5 1 (1.1)

where &, := t + s7Y (1) Smce 7Y || converges to 0 almost surely when 7 — oo, and the density-
quantile function f o F~! is uniformly continuous on [§,1 — §] by Assumption 1.1, we obtain from
representation (4.1) that the bound

o FH () (t) — 2 (O < 41— )41/ ] 0as. (1)
=41 - B 0as (1)

holds true for any fixed A > 0. Consequently, we have the bound
| Ra(t)] < 641~ {18 1| 0a.s.(1) + sl R}

that completes the proof of Lemma 4.1. I

Lemma 4.2 Bound (2.5) holds true for all t € [250,,8] U [1 — §,1 — 258,|, where § > 0 is a
sufficiently small but fized number.

Proof. Let t € [253,,6]. The Taylor formula (cf. representation (4.1)) implies the bound
(1)
o] < b O [ s (1.2
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where &, := t + 57 (t). Since J > 0 is sufficiently small by assumption, we use Assumption 1.1 in
order to replace both f o F~1(¢) and fo FF=1(&) on the right hand-side of (4.2) by ¢™*.51(1/t) and
E751(1/€5), respectively. Consequently, the bound

T < b 0] [ { ol psti+ons (1) (1.3

579—151 1/55
holds true for a finite constant ¢ that does not depend on §, n, and t. It is shown on p.889 of M.
Csorgd and Révész (1978) that t/&s does not exceed 5 + 045 (1) (< 10 for large n). In a similar

way one can check that ¢/&s is not smaller than 5/9 — 0,.5.(1) (> 1/10 for large n). Applying these
two facts on the right-hand side of (4.3), we get the bound

N 0 51(1/1)
Fo PO < e 0] _sp {00 () (1.4

The Uniform Convergence Theorem [UCT] for slowly varying functions (cf., for example, Theorem
1.2.1 on p.6 of BGT, 1987) tells us that the supremum on the right-hand side of (4.4) does not
exceed, say, 10 if ¢ is sufficiently small (which is easily achieved by taking ¢ > 0 sufficiently small
and upon recalling that 0 <t <¢). In this way we arrive at the bound

Fo P () lm(O] < el (O + 0a.s. (1)} (4.5)

that holds true for all ¢ € [25d,,d]. In a similar way one obtains the bound (4.5) for all ¢ €
[1— 0,1 —25d,]|. Consequently, for all ¢ € [2505,d]U[1 —d,1 —250,], the quantity | R, (t)| does not
exceed

B
11 —1)

75 (t)

ct1/21t1/2< sup ‘
( ) t(1—1) t€[256n,1 258,

t€[258,,1—258,]

){1 F s (1)),

The proof of Lemma, 4.2 is now complete. [

Lemma 4.3 Bound (2.5) holds true for allt € [1/(n+1),250,] U [1 — 250,,n/(n+ 1)].

Proof. Let t € [1/(n+1),250,]. The Taylor formula implies the representation

Fo = (thm(t) = /t o %d& (4.6)

Due to Theorem 5(i) on p.80 in Wellner (1978), we have that, almost surely, the bounds £, 1(¢) <
E;Y(258,) < ¢6, hold true for sufficiently large n. Therefore, both ¢ and E-1(¢) can be made

arbitrarily small, which enables us to use Assumption 1.1 on the right-hand side of (4.6) and obtain
the bound

/En1<t) t1.51(1/t) p
t

Jo F (Dt < e s51(1/5)"

s (D} (4.7)
In order to estimate the ratio S1(1/t)/S1(1/s) in (4.7), we use Potter’s Theorem (cf. Theorem 1.5.6

on p.25 in BGT, 1987) and obtain that, for any ¢ > 1 and p > 0, and for sufficiently large n (in
order to make both ¢t and E;, !(¢) sufficiently small), the bound

sifer =) v () 4
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holds true for all ¢ € (0,254,]. We also observe that, due to Assumption 1.1, if we have 7, = 0,
then bound (4.8) holds true with p = 0. Consequently, bounds (4.7) and (4.8) imply the following
one

Fo P O] < A1 + 0as. (1)}, (4.9)

E N /NI ( /s\P I\
[ ) {6 () e
t S t S
(We note in passing that p in the definition of A(t) is either 0 or positive depending on, respectively,
whether 71 = 0 or 71 > 0.) If E;1(t) > t, then s > t, and we therefore obtain the bound

where we have denoted

A(t) =

A() < eft +inPE (1), (4.10)

since we can always chose p so small that 71 — p # 1. On the other hand, if E;1(t) < t, then
inequality (4.10) holds true with 71 — p replaced by 71 + p, since p can always be chosen so small
that 71 + p # 1. Denote 7 := 7 & p, where we have either + or — depending on, respectively,
whether E;1(t) <t or E;1(t) > t. Consequently, we have the bound

Alt) <t +m BN ()T} (4.11)

with 7 = 71 + p. (It is obvious that 7 can always be assumed to be non-negative since p = 0 if
71 = 0 and p > 0 can be chosen arbitrarily small if 4 > 0.) If 7 € [0,1), then 1 —7 > 0. Therefore,
using the bound E;1(t) < ct!=*{1 + 045 (1)} that holds true for any fixed A > 0 (cf. (8) on p.483
of Wellner, 1977), we get

A) < et' 0" 40, (1))
< ett?AA=EY20 4 o, (1)), (4.12)

If 7 € [1,00), then the bounds ™ < 17267717 and E;1 ()"~ < UL imply the bound A(t) <

et/ 25711/ 2 (6,/U1.n)"~1. Consequently, due to the fact that for any € > 01157]:16 statement lim inf,, oo Ur.nn(logn)i+e =
oo holds true almost surely (cf. (3) on p.408 of Shorack and Wellner, 1986), we get the bound
A(t) < ct'/?612(logn) Do, (1) (4.13)
for any € > 0. Taking bounds (4.9), (4.12) and (4.13) together, we arrive at the following one
[f o F7H (0 (t)] < et 270021+ 0q..(1)) (4.14)

that holds true for all ¢t € [1/(n+ 1),250,]. In a similar way one arrives at bound (4.14) for all
t € [1—250n,n/(n+1)|, but with ¢ on the right hand side of (4.14) replaced by 1 —¢. Consequently,
the bound

|[Ra(t)] < et"27(1 = )220/ 2 {1 + 04 (1)} (4.15)

holds true for all ¢ € [1/(n + 1),250,) U [1 — 250,,n/(n + 1)]. This completes the proof of Lemma
4.3. 0O

Proof of Theorem 2.2 Theorem 2.2 is an elementary consequence of Lemmas 4.1-4.3. I
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Lemma 4.4 Bound
L
|Rn(t)| < Ct(Tl/\%—E)\/O(l - t)(rg/\%—e)\/o(;%Jr 1{1 + 0(1.5.(1)}
holds true for allt € (0,1/(n+ 1)|U[n/(n+1),1).

Proof. We first estimate the quantity |R,(t)| for all ¢ € (0,1/(n+1)]. Theorem 1 of Wellner (1977)
tells us that B, () < ct'=M1 + 04.5.(1)} for any fixed A > 0. Thus,

187 (1)) < ct' M1 + 044 (1)} (4.16)
< et/2me1/ 2T 4o, (1)), (4.17)

We are now to estimate |fo F=1(t)y,(¢)| for all ¢ € (0,1/(n+1)], Using inequalities (4.9) and (4.11)
as well as the equality £, 1(t) = U1, that holds true for all ¢ € (0,1/(n + 1)], we obtain the bound

|f o F7H(t)m(t)] < eft +TULTS (4.18)
Furthermore, since the following two statements

limsup{n/logn}U;., < oo a.s.

n—oo

(cf. Exercise 2(i) on p.408 of Shorack and Wellner, 1986) and, for sufficiently small ¢; > 0,

limsup d; Y2 U, (c6/?) =0 a.s.

n—oo

(cf., for example, Theorem 1 on p.542 of Shorack and Wellner, 1986) hold true, we easily obtain
from (4.18) the following bound

e
1f o F () ya(t)] < et 3= 0525 0 4 o, (1)) (4.19)

The proof of bound (4.19) for all ¢t € [1 —1/n,1) but with (1 — t)(TQA%_E)VO instead of ((71/3=9)V0
is similar. This remark completes the proof of Lemma 4.4. O

Proof of Theorem 2.1. Theorem 2.1 follows immediately from Theorem 2.2 and Lemma 4.4. [

Lemma 4.5 Bound (2.6) holds true for all t € [5,1 — §], where § > 0 is an arbitrary but fived
number.

Proof. Tt is easy to check (cf. M. Csorg and Zitikis, 1996b, and Zitikis, 1998) that the “asymptotic
expansion”

Vall) = 588 () + pult), 0 <1 <1, (4.20)
holds true with the “remainder” term
1 1
pn(t) = An(t) o §Bn(t) + gcn(t% 0<i< 17

where
a0 [, 4 - A aare)
Balt) = {8(0) 4oL 0halt) 1= B (@m0

Co(t) := /Etl(t){F;l(t) —2F7Y(s) + F(t) }ds.
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Using the “asymptotic expansion” of (4.20), we obtain the following representation for the process
Yo

Talt) = B0 1 F o F~ (0pa(t). (1.21)

We are now to estimate both summands on the right-hand side of (4.21). The bound
|[Ra ()5, (O] < est™ (1 — )| Ralll|81 (4.22)

is obvious and holds true for any fixed A > 0. In order to estimate fo F=1(t)|pn(t)], we start with
the bound

fFo P ()| An(t)] < cf o FH ()| vm(®)|wn (7 (D),
where
wa(h) = sup |8, (u) — S5 (v)|

lu—v|<h

is the oscillation moduli of the (0, 1)-uniform empirical process BY. Consequently, we have the
bound

o FH 0 An()] < {1 Rall + 1185 Bwn (Il 1)
= {lIRall + 1185 en I8 1), (4.23)

where the above equality holds true due to ||[/Y || = ||8Y]|. Because of the two statements

limsupd; 2Bl < ¢ a.s.
n—oo

and, for sufficiently small ¢; > 0,

limsup d; Y2 U, (c6/?) =0 a.s.

n—oo

(cf., for example, Theorem 1 on p.542 of Shorack and Wellner, 1986), we get from (4.23) that

fo F7H ) An(@)] <t (1 — ) {||Rnll + ||65||}5n%+610a.s.(1)- (4.24)

The bounds
fo F7Y0)|Ba(@)] < at*(1 — ) {|[Rnll + I18% I MBS | (4.25)
<at (1 — ) {|[Rall + 187 13187 ] (4.26)

are obvious. In order to estimate fo F'~1(t)|Cy(t)| we proceed as follows. Changing the integration
variable s in C,(t) by t + s7Y(¢), and then applying the Taylor formula for F'~!, we obtain the
representation

Fo P ()Ca(t) = —{m (1)
P o Y1)
/ / { (Lt s175 (1) 28f o F=1(t + s17Y (t)s) }dslds. (4.27)

An elementary rearrangement of the right-hand side of (4.27) gives, in turn, the representation

Fo I 00 = 1 OF _
S M ) (i e 629
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Since ||7Y || converges to 0 almost surely, and the density-quantile function f o F'~! is uniformly
continuous on every compact subinterval of (0, 1), we get from (4.28) that

Fo FTHOICH(0)] <tA(1 — )|y [Poa.s.(1). (4.29)
Representation (4.21) and bounds (4.22), (4.24), (4.26), (4.29) taken together imply the bound

POl < et (1= ) IRl + B IS+ LRl 1187 1385/ + IIﬂZJIIQOa.s.(l))-( |
4.30

Lemma, 4.5 is proved. [

Lemma 4.6 Bound (2.6) holds true for all t € (250,,0] U [1 — 250,,1 — ), and any sufficiently
small but fized & > 0.

Proof. Tt easy to prove (c¢f. M. Csorgé and Zitikis, 1996a, and Zitikis, 1998) that the bound
[Va()] < 18Y(1)]|7n(t)] holds true for all ¢ € (0,1), which in turn implies the bound

Ta(O] <187 (OIf o F=H () (0] + 185 ()] (4.31)

for all t € (0,1). Using bound (4.5) on the right-hand side of (4.31), we immediately obtain the
following bound

U U (¢
To(t)] < ct(1 t)( sup () RAOR
t€(256,,,1-258,.] | V(1 — 1) te[256n,1 256,] | V/1(1 — 1)
+ o sup _Bat) 2){1 Vous (1)}, (4.32)
1€]256,,1—258,.] | V(1 —©)

which completes the proof of Lemma 4.6, [
Lemma 4.7 Bound (2.6) holds true for allt € [1/(n+1),250,] U [1 — 250,,n/(n+ 1)].
Proof. Bounds (4.31) and (4.15) imply

Ca(t)] < et!22(10 = )22, 2P B O{T + 00 (1)} + €81 (1)

U
l—erq1  p\1—egl/2+e 6 ()
S t (1 t) 671 ! tes(lé%) t1/2—6/2(1 )1/2—6/2 {1 + Oa.s. (1)}
BH (1) i

+ 71— )10 sup
te(0,1)

(4.33)

t1/2=</2(1 — 4)1/2=</2
The proof of Lemma 4.7 is complete. [
Lemma 4.8 Bound (2.6) holds true for allt € (0,1/(n+1)]U[n/(n+1),1).

Proof. Lett € (0,1/(n+1)]. An application of bound (4.18) as well as |3Y ()| < ct'= M1+ 04..(1)}
(cf. the first inequality of (4.17)) on the right-hand side of (4.31) implies that the bound |Y,(t)| <
Mt UL+ 045 (1)} holds true for any fixed A > 0. Consequently, for any fixed ¢ > 0
and A > 0, we have the bound

Ta(6)] < et = {e =Mt ULTHL + oas (1)) (4.34)
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JFrom now on throughout this proof we choose
A =¢/4.

Since the two statements
lim sup{n/ logn}U., < oo
n—oo

(cf. Exercise 2(i) on p. 408 of Shorack and Wellner (1986)) and
linni)iggf n(log n)QUlm =00

(cf. statement (3) on p. 408 of Shorack and Wellner (1986)) hold true almost surely, we derive
from (4.34) that the bounds

Ta(t)] < et ={(1/n) 4 (1/n) (1 /n) =7 Y ou5.(1)
< ctl_e(l/n)He/Qoa.s.(l)
< et . (1)

hold true for some €1 > 0 and all ¢ € (0,1/(n+ 1)]. In a similar way one proves that the bound
T, (8)] < c(l — )40+ 0, (1) holds true for all ¢ € [n/(n+ 1),1). Consequently, the bound

ITa(t)] < et (1 — )65 " 006 (1) (4.35)
holds true for all ¢t € (0,1/(n+ 1)U [n/(n+ 1),1). The proof of Lemma 4.8 is now complete. O

Proof of Theorem 2.3. Taking Lemmas 3.5-3.8 together, we complete the proof of Theorem 2.3.
O

5 Concluding remarks

The current paper is a slight revision of our preprint Csorgé and Zitikis (1998). While preparing this
paper for publication in this volume in Honour of P4l Révész, we were informed in February, 1999,
about the existence of the paper Drees and de Haan (1999), where the authors have independently
obtained results that are similar to ours, concerning the quantile process, under weaker assumptions
than those spelled out in (1.13) and (1.14). Namely, instead of using the notion of regular variation,
Drees and de Haan (1999) employ delicate modifications of this notion like, for example, O-regular
variation and extended regular variation. It would therefore be of interest to adapt these ideas of
Drees and de Haan (1999) for the sake of modifying and improving other results of the present
paper, and in particular those related to the Vervaat process V,.
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