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1. Introduction

Let {U;};>1 be a sequence of independent and identically distributed random variables,
whose common law is the uniform distribution in (0,1). Define the uniform empirical
process

an(t) 02 (Fu(t)—1t), 0<t<l1,

where F,(-) is the empirical distribution function based on the first n observations, i.e.,
Fut)4 L i]l{,].q}, 0<t<l.
(L - -

Likewise, we can define the uniform empirical quantile process

But) En 2 (F7 (1) — 1), 0<t<,

e

where F,71(t) o inf{s > 0: F,(s) >t} (for 0 <t < 1) and F,,1(0) o F71(0+4) is the

inverse function (quantile function) of F,,. The process
R (t) = an(t) + Ba(t), 0<t <1,

which is often referred to as the (0,1)-uniform Bahadur—Kiefer process, enjoys some

remarkable properties. Let us recall the following Bahadur—Kiefer representation theorem.

Theorem A (Kiefer [17], Shorack [24]|, Deheuvels and Mason [11]). We have,

(1.1) lim n'/4(logn)~!/2 & =1, a.s.,

n— 00 ||an||

where || f|| o supg<;<1 |f(t)| denotes the uniform sup-norm of f.

Together with some well-known laws of the iterated logarithm (LIL’s) for o, (cf. Fact

3.2 in Section 3 for the exact statement), (1.1) immediately implies the following:

(1.2) limsup n'/*(logn)~Y?(log, n)~Y* ||R,|| = 274, a.s.,
oo 1/4 ~1/2 1/4 /2
(1.3) hnIl’_l)lol’olf n'/4(logn) =Y (log, n)Y* | Ry|| = S/ a.s.,

where log, n def log(logn).



The study of the Bahadur—Kiefer representation was initiated by Bahadur [2], who
proved a “pointwise” version of (1.1). Kiefer [17] pointed out Theorem A, even though he
only proved the convergence in probability, and omitted the proof of the theorem due to
its extreme length. The upper bound in (1.1) was proved by Shorack [24], and the lower
bound by Deheuvels and Mason [11]. We mention that a simplified proof of the lower
bound was since discovered by Einmahl [14]. For a detailed discussion of various aspects
of the Bahadur—Kiefer theorem, as well as extensions to sequential empirical processes, we
refer to Csorgd and Szyszkowicz [10].

Looking at Theorem A, it is remarkable that the ratio between ||R,|| and /]|,
suitably normalized, should almost surely converge to a constant. A natural question
would be whether it remains true if the uniform sup-norm || - || is replaced by, say, the
L?>-norm || - ||2. For example, one might wonder if either || Ry||2/+/]lcn] or | Rull2/~/][cn|2
would still be of order of magnitude which is around n=/ 4(log n)l/ 2, perhaps with an extra
term of some power of log, n.

Somewhat surprisingly, the answer is no: we should use a different normalizing
function. Moreover, under the new normalization, the ratio between ||R,||2 and the square
root of o, under the L'-norm, converges again to a constant limit with probability one.
More precisely, we have the following LP version of the Bahadur—Kiefer representation.
Throughout the paper, we write || f||, o (fol |f(t)[Pde)/P.

Theorem 1.1. Let 2 < p < oo and qdéfp/z Then

(1.4) lim n'/4 Rl = ¢o(p), a.s.,
e lomllq

where

e F + 1 2 1/P
(15) co(p)E (BN = V2 (%) ,
and N denotes a Gaussian N(0,1) variable. In particular,

lim n'/* M =1, a.s.

e Vel
Remark 1.2. The condition p > 2 is to ensure that || - ||4 is a true metric norm. When

0 < p < 2,itis no longer a metric. Our proof shows that in this case, we still have the
following weaker version of Theorem 1.1: for 0 < p < 2, there exist two finite constants

c1(p) > 0 and cz(p) > 0, depending on p, such that

¢1(p) < liminf n'/4 Bl < limsup n'/* N Bnllp <

< ca2(p)
n—oo Vienlly = n—oo Vel ’
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Remark 1.3. The reason for which the normalizing function in Theorem 1.1 differs from

the one in Theorem A will become clear in Section 3.

From (1.4), it is possible to deduce the almost sure asymptotics of R, under the

LP-norm.

Corollary 1.4. For 2 < p < o0,

limsup n'/4(log, n) V4 || R, = 24 co(p) v e3(q) a.s.,
liminf n*(log, )4 ||Rnll, = co(p) v/ea(q) a.s.,

where co(p) is as in (1.5), ¢ = p/2, and ¢3(q) € (0,00) and c4(q) € (0,00) are defined by

def 9= (a=1)/ag=1/2(q 4 2)(4=2)/(29)

C3lg
(1.6) 9= (a=1)/agl/2 (q 4 2)(4=2)/(29)
| = B(1/2,1/q) ’
dEf . co q 1/q
(1.7) eile) ot ( / el f(z)da)

Here, B(-, -) is the usual beta function, and C is the set of probability densities f such

that L ()
Y
5/_00 fw) dy =1

Remark 1.5. Comparing this corollary with (1.2)—(1.3), it is immediately noted that R,
has rather different asymptotics under L?- and L*°- norms. This is in complete constrast
to the situation for the empirical process a,. Indeed, ||| and || ||, satisfy almost the
same LIL’s (from both limsup and liminf points of view), except for the constants, cf.
Lemmas 3.3 and 3.8 and Fact 3.2 in Section 3 (they are stated for the Kiefer process,
but in view of the KMT strong invariance in Fact 3.1, one can immediately deduce the

corresponding LIL’s for a,).

Remark 1.6. The value of the constant cs(¢) in (1.7) is in general implicit, except for
g =1 or 2. Indeed, c4(2) = 1/v/8, and it follows from the proof of Lemma 3.3 (cf. Section
3) and Takécs [30, Theorem 1] that

2ay [’
27

C4<1) =



where a} < 0 denotes the largest real root of Ai’(-), the derivative of the Airy function

Ai(-).

As a consequence of (1.1), the continuity of || - || on C[0,1] and the fact that we have
(cf. Doob [13], or Theorem 1.5.1 in [8])

(1.8) P(|B|| <z)=1+2 Z:(—l)]C exp(—2k*z?), x>0,
k=1

where {B(t); 0 <t <1} is a Brownian bridge, we also have the following corollary.

Corollary 1.7 (Kiefer [17]). For z >0,

(1.9) lim P(n"/*(logn)™"*|Ral < =) = P{\/]B] < z}

n—oo

=142 Z:(—l)]C exp(—2k*z*).
k=1

In a similar vein, from Theorem 1.1 we conclude the following LP analogue of (1.9).
Corollary 1.8. With 2 < p < oo and g = p/2 we have

(1.10) lim P(n'/Y Ryl < 2) = P(co(p)y/[| Bl <), @ >0,

where {B(t); 0 <t <1} is a Brownian bridge.

For a Brownian bridge {B(t); 0 <t < 1}, Smirnov [26], Anderson and Darling [1]
established the following result (cf., e.g., [8, Theorem 1.5.2]):

2 & kT exp(—t2z/2)
1.11 P((|Bl2)? <z)=1—2= -ﬂk“/‘ — 7, z > 0.
1) BB <) =1- 230 =

Consequently, with p =4 and hence ¢ = 2, (1.10) and (1.11) yield
(112)  Jim P Ralla < 7) = Pleo(@)/TBT: < )

2 kT exp(—t2z*/6)
_1-Zz —1“1/ SPUTL /D) g, x>0,
™ kzzl< ) k-1 Vi sint

on account of co(4) = 3%/4.



The convergence in distribution of the appropriately normed functionals ||R,|| and
| Rx||p, respectively as in (1.9) and (1.10), is of special interest from the practical point of
view of constructing classes of goodness-of-fit statistics for a large family of distributions
(cf. Theorems B and 4.1 via Remark 4.2 in Section 4 (Appendix)).

The respective statements of Corollaries 1.7 and 1.8 combined also imply that the
(0, 1)—uniform Bahadur—Kiefer process {R, (t); 0 <t < 1} cannot be so normalized that
it would converge weakly to a nondegenerate random element Y of D]0, 1] (endowed with
the Skorohod J; topology). Indeed, if a,R, L.y in DJ0,1] were to be true with any
sequence {a,} of positive real numbers, then the latter would have to yield both (1.9)
and (1.10) simultaneously, without any further renormalization, and this of course is im-
possible. Consequently, Corollaries 1.7 and 1.8 cannot result from any standard finite
dimensional distributions and tightness type arguments on D[0,1]. This fact has already
been established in 1972, via a different route, by Vervaat [31], [32] (for further comments
along these lines cf. also Zitikis [33, Section 1 and Remark 6.1]), which we now summarize

by restating it here as a corollary to Theorems A and 1.1 via the combined statements of
Corollaries 1.7 and 1.8.

Corollary 1.9 (Vervaat [31], [32]). The weak convergence
(1.13) anRn, AY, n — oo,

for the (0, 1)—uniform Bahadur—Kiefer process { R, (t); 0 <t <1} cannot hold true in the
space D[0,1], endowed with the Skorohod Jy topology, for any sequence {ay} of positive

real numbers and any nondegenerate random element Y of D[0,1].

The rest of the paper is organized as follows. Section 2 is devoted to some preliminaries
for the modulus of continuity of the Brownian motion and the Brownian bridge under the
LP-norm. The latter results are of interest on their own. Theorem 1.1 and Corollary 1.4
are proved in Section 3. We extend our results to more general Bahadur—Kiefer processes

in Section 4 (Appendix).

Notation. Throughout the paper, cs, cg, - - -, c1s stand for some finite positive constants.

We write a,, ~ b, (n — 00) to denote lim,,_, o a, /b, = 1.

Technical Remark. (i) When dealing with a Brownian bridge {B(t); 0 <t < 1}, some of
our statements involve t in the left neighbourhood of 0 or in the right neighbourhood of 1.

This can be rigorously justified, for example, by bringing in some independent Brownian
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bridges for t € [—1,0] and for t € [1,2]. However, since these pieces do not influence any
of the results, we shall not give any further discussion about this, in order not to make
the proof tedious. The remark also applies to Brownian motion W (t) when ¢ is in the left
neighbourhood of 0.

(i) Unless stated otherwise, we shall be dealing with index n which ultimately goes
to infinity; as a consequence, even without further mention, our statements should be
understood for the situation when n is sufficiently large.

(iii) Our use of “almost surely” is not systematic.

2. Modulus of continuity

Let {W(t); t > 0} be a standard one-dimensional Brownian motion. Throughout the
section, we fix 2 < p < 00 and write qdéfp/z

The main result of this section is the following probability estimate for the modulus
of continuity of W under the LP-norm. Observe that it is very different from Lévy’s usual

modulus of continuity theorem.

Proposition 2.1. Let
dof [
Ay (R)% / W (s +h) — W(s)|P ds.
0
For any € > 0, there exists ¢c5 = ¢5(¢, p) such that for all 0 < h < 1/2,
(2.1) P(| As(h) ~ RIE(NT) | > 2 ) < cs b,
where N is as before a Gaussian N'(0,1) variable.

Remark 2.2. By means of a standard argument (cf. for example Csorgd and Révész [8,

pp. 26-27]) and (2.1), one easily obtains:
1/p
W(s+h)— W(s)|pds> —o(p),  as.

where co(p) is defined in (1.5). This should be compared with Lévy’s well-known modulus

of continuity theorem:

sup sup |[W(s+u)—W(s)| =1, a.s.

1
lim —————
h—0 /2hlog(1/h) 0<s<1 0<u<h
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The proof of the proposition relies on the following moment inequality for partial

sums, which is a particular case of Theorem 2.10 of Petrov [23, p. 62].

Fact 2.3. Let {X;};>1 be a sequence of iid variables with E(X;) = 0, such that E(X?) <

oo. Then
n 8
E|: (ZX1> } S C67’L4E<X18),
i=1
where cg Is an absolute constant.

Proof of Proposition 2.1. It suffices to treat the situation when h is in the (positive)
neighbourhood of 0. Let M = M (h) et [1/(2R)] + 1. We have,

2M mh
MOEDS /( WG W) s
m=1Y "=

M (25-1)h
- Z/( [W (s + h) = W(s)|"ds

—1J@i-2)n

M 2jh
+ / (W(s+h)—W(s)|Pds
2 Joroon

(2.2) YA (h) + As(h),

(25=Dh

55— 2)h (W (s +h) —W(s)|Pds)i1<j<n are iid variables,

with obvious notation. Clearly, ( f(

each distributed as h?T!' =, where
ot [
5 / W (s +1) — W(s)P ds.
0

Therefore,
M
Bo(h) = RTTESY,

=1

where (Y;) are iid variables, each having the law of =, and «laWs s tands for identity in law.
Since Z < (2supg<;<2 |W(2)[)?, we immediately deduce that = admits finite moments of

any order. Therefore, by Chebyshev’s inequality and Fact 2.3, for any € > 0,

p( |As(R) — R M E(E)] > 5hq“M>

< (kM) B[ (Aa(h) — KM M EE))
< (eM)"®cs M*E[(Z — EZ)]
S Cr h4.



Since As(h) has the same distribution as Az(h), we obtain, in view of (2.2),
(2.3) IP’(Al(h) _ 2Rt ME(E) > 2ehq+1M) < 2¢r B,

On the other hand, instead of (2.2), if we use the relation

M-1 (25—1)h 2jh
(/ / ) W (s + h) — W (s)|" ds,
(25—2)h (2i—1Dh

J=1

the same argument yields that
(2.4) ]P’(Al(h) —ORTHY(M — 1)E(E) < —2ehTH (M — 1) ) < cg b,
Combining (2.3) and (2.4) yields that, for all € > 0,

]P’(‘Al(h) — RIE(E)

>cht) <eoh'
Since E(Z) = E(|N|?), this completes the proof of (2.1). O

Looking at the proof of Proposition 2.1, we realize that the positivity of h has played no
role at all, i.e. the argument works out also for negative h (when |h| is small). Therefore,

we can state the following “two-sided” version of the proposition: for any € > 0 and
0<|hl <1/2,
(‘Al |h|qE|N|p ‘>€|h|q><010h

or, more conveniently,

(2.5) (‘(Al(h P colp \/W‘>5\/W><cnh

where co(p) is the constant in (1.5).
Consider now a standard one-dimensional Brownian bridge process { B(t); 0 <t < 1}.

It is well-known that B can be realized as
B(t) =W(t) —tW (1), 0<t<1.
Using this representation and the Minkowski inequality, we have
1 ! 1/p
(2.6) (A (R))V/? — (/ B(s+h)~B(s)Pds) | < [hW (1)),
0

_9_



On the other hand, by the usual estimate for Gaussian tails, for any ¢ > 0,

2

(2.7) P (1) > elh]~2) < 2ex(—550).

Combining (2.5)—(2.7) (and replacing € by €/2 in (2.5)) yields that
! 1/p
PH(/O |B<5+h)—B(S)lpdS> —co(p) VIR ‘>€\/|h|}

<[ | (ai(m)"P - (/01 B(s + h) —B(s)|pds>1/p‘> v

+P[ [ (Aa()"* = cop) /IR | > = /AT |
<P([W(1)>

< 26Xp(—€—) + c10 B,

So we have proved the following result which will be useful in Section 3 in the study of the

Bahadur—Kiefer representation.

Proposition 2.4. Let {B(t); 0 <t < 1} be a Brownian bridge, and fix € > 0. There
exists ¢13 = c13(e, p) > 0 such that whenever 0 < |h| < 1/2,

(2.8) p[ ‘ (/01 |B<s+h)—B<s)|pds)1/p—co<p)m\mﬂ} < i3 b

3. Proof of Theorem 1.1 and Corollary 1.4

Let o, be the uniform empirical process defined in Section 1. We first recall the

well-known Komlds—Major—Tusnddy (KMT) strong approximation theorem.

Fact 3.1 (Komlés, Major and Tusnady [18]). (Possibly in an enlarged probability
space), there exists a coupling for the empirical process o, and an iid sequence of standard

Brownian bridges { B, };>1, such that

_ O((logn)

(3.1) H  — % zn: B;



where || - || denotes as before the uniform sup-norm.

We shall be working on the independent Brownian bridges (B;);>1 introduced in (3.1).

For notational convenience, we write
(3.2) K. Y Bit), 0<t<1.

In the literature, K, (t), as a process indexed by (¢, n), is referred to as the Kiefer process.
We now recall two important versions of the LIL for the empirical process. In view of (3.1),

it is equivalent to state them for K.

Fact 3.2 (Chung [4], Smirnov [27], Mogulskii [20]). We have,

K, 1
(3.3) lim sup _ AL = — a.s.

n—oo /2N ].Og27’L 2’

Jogo n
(3.4) liminf Y2827 e i = ©

—, a.s.
n—oo \/ﬁ \/g

The following result will be useful in the proof of Theorem 1.1.

Lemma 3.3. For g > 1,

o yJogsmn
(35) timint =72 | Kol = ci(a),

where c4(q) € (0,00) is the constant defined in (1.7).

a.s.,

n—

Proof. Though the general statement of Lemma 3.3 seems to be new, it was implicitly
proved by Donsker and Varadhan [12]. Indeed, according to Borovkov and Mogulskii [3],
there exists c14 = c14(q) € (0, 00) such that

(3.6) lin% ?logP(||W], < z) = —cu4,

where W is a Brownian motion. From this, a standard argument (cf. for example Shorack
and Wellner [25, pp. 527-529]) yields

Jog, T
(3.7) liminf Y2220 \W(.T)|, = e, as.



On the other hand, Donsker and Varadhan [12] proved that the “liminf” expression in
(3.7) equals c4(q), where the constant c4(q) is defined in (1.7). Therefore c14 = (ca(q)).

To prove the lemma, note that (3.6) holds also for the Brownian bridge B in lieu of
W, ie.

lim 2”logP( || B, < 2) = —(ca(q))*,

Applying the usual Borel-Cantelli argument readily completes the proof of Lemma 3.3. O

Now we recall some results concerning the oscillations of K,,. Write
(3.8) wn(h) f sup |Kn(t) — Kn(s)], 0<h<1,

0<s<t<1, t—s<h

throughout the section.

Fact 3.4 (Stute [29]). For any non-increasing sequence of positive numbers (a,,),>1 such

that n +— na,, is non-decreasing and that log(1/a,)/log, n — o0,

(3.9) lim “n(@n) =1, as

n—oo /2na,log(1/a,)

Fact 3.5 (Mason et al. [19]). If a, is non-increasing and na,, is non-decreasing such
that log(1/a,)/logsn — p € [0, ),

(3.10) T () s S
n—oo 4 /2na,log, n

The next is a simple observation. A discrete-time version of this was (somewhat
implicitly) stated in Einmahl [14, p. 530]. Let {B(t); 0 <t < 1} as before be a standard

Brownian bridge.

Fact 3.6. Fix 0 <u <wv < 1. The process
{ B(u+ (v —u)t) —tB(v) — (1 —t)B(u)
VU —u

is again a Brownian bridge. Furthermore, it is independent of 0{B(s); 0 < s < u}V

;ogtgl}

o{B(s);v < s < 1}, where o{-} stands for the o-algebra induced by the process or

variables between the braces.

Let us start the proof of Theorem 1.1. As before, we fix 2 < p < oo, and write
q def p/2. The first step in the proof is the following preliminary estimate, which will later

lead to a law of large numbers.



Lemma 3.7. Let € > 0 and n > N® > ng. Define, for each 0 <i < N —1,

bi n déf n_l/QB(i)v

’ N
(i+1)/N 1/
Ay(i,n) 4 (/ B(t—bi.) — B)P dt) g
i/N
e (x) o eNTVP|g|/2 4 aNI=YPp /6|y, z €R.

When ng is sufficiently large,

1@( \ Aa(iyn) — co(p) N™YP|by | /2 \ > %(bi,n))
(3.11) <cisn PN+ 26Xp(—2n1/3),

where cy(p) is as in (1.5).

Proof. Define the o—algebra

fand;fO_{bjjn; 0<5< N}-

For each 0 <i < N —1, let

S0 VN (B(i;t) —tB(i;\“[l) _a —t)B(%)), 0<t<1,

which, according to Fact 3.6, is a Brownian bridge independent of F, n. (Actually

{&}o<i<n—1 are independent Brownian bridges, though we will not use this). Define

o [N 1
M) ([ Bty -BErdas) . yek,
i/N

def _
E,= { max |bj | <n 1/3}.
0<j<N

Observe that )
1/
As(y,i,n) = N_l/H/p(/ lg(t)[? dt) ",
0

where

R (B i)
= &t +uN) — &(0) + 9N (BCS) = B(3)).



By the Holder inequality, on the event E,,, we have

st~ N[tk - g ar)”
0

_ 1+1
< [yl NP B(S) - B3 )

< 2N1—1/pn1/6 |y|

Write the conditional probability P7n.~ (. )def P(-|F.n). Note that E, is an F, v
measurable event. Therefore, applying (2.8) to the Brownian bridge &; yields that, for

any JF, n—measurable random variable Y with |V N| < n~1/6

(3.12) 1, PPny ( \ As(Y,i,n) — co(p) N~VP /Y] \ > %m) <15 (YN),

Choose Y dof _ b; n, which effectively is F,, y—measurable and satisfies |[Y N| < n—1/6
E,. Note that As(—b;n,i,n) = A4(i,n). Take the expectation on both sides of (3.12) to

see that

on

]P( ‘ A4(i,n) — co(p) N_l/p|bi,n|1/2 ‘ > §0€<_bi,n); En> < ¢13 n~4/3 N4,
On the other hand,

P(E;) < ]P’( | Bl > n1/6> < 2]P’( sup B(t) > n1/6> = 2exp(—2n'/?).
0<t<1
(For the exact distribution of supg<; < B(t), cf. for example Csérgé and Révész [8, p. 43]).
This completes the proof of Lemma 3.7. a

Proof of Theorem 1.1. Let o, be an empirical process, whose associated iid KMT
Brownian bridges (B;);>1 are defined via (3.1). Let K, be as in (3.2). Recall the following
strong approximation theorem due to Csorgd and Szyszkowicz [10, Theorem 4.1]: as n

goes to infinity,

K, K

(3.13) H R, —

‘ = O(n~*8(logn)**(log, n)l/s), a.s.

In view of Fact 3.1 and Lemma 3.3, the proof of Theorem 1.1 is equivalent to showing the

following: for 2 < p < o0 and g = p/2,

(3.14) i 1= Kl =T K
oo K llq

=co(p), as.



(Since we do not really need a result as strong as (3.13), we point out that the KMT theorem
(i.e. Fact 3.1) — together with Fact 3.4, Lemma 3.3 and some elementary computations
— also suffice to imply the equivalence between (3.14) and Theorem 1.1. Observations in
this direction have already been made by several authors, cf. for example Deheuvels and
Mason [11], Csorgd and Szyszkowicz [10]).

To prove (3.14), let us write

N = N(n)= [(logn)*].

the integer part of (logn)?. Applying (3.10) to the sequence a,, = 1/N yields that, almost

surely for all sufficiently large n,

1/2 (log, n)1/2

(3.15) max sup | K. (t) — | < 2¢/4p+1 N1/2

0<isN—1 j/N<t<(i+1)/N

Note that, for any fixed r > 1, there exists a finite constant ci16 = ¢16(r), such that
(3.16) 2"~y [ <cis(lz—y[ +v 'z—yl), 2>0,y>0

We can use this inequality for r = ¢, z = |K,,(i/N)| and y = |K,(t)|, to see that, almost
surely as n goes to infinity, uniformly for 0 <¢ < N —1and t € [¢/N, (i+1)/N],

[ K (8)]7 — [ K (N)|q

nq/2<10g2 n)q/2 n1/2(1og2 n)l/Q g—1
O(—xam— ) +o(F—xim — Kl

n9/?(log, n)/? n9/?(log, n)/?
o(—Nr —)ro(mr )

the last identity following from the Chung—Smirnov LIL (cf. (3.3)). Integrating over
t € [i/N, (i +1)/N] and then summing over i, we obtain,

i nd/2(log, n)/?
| Kalld - Zu«ﬁq:( ) as.

which, according to Lemma 3.3, is o(|| Ky ||¢), almost surely. As a consequence,

N-1 .
1 1
(3.17) [ Knllg ~ N § |Kn(N)|q, a.8.
0



Now fix 0 < e < 1. Write, foreach 0 <i < N —1,

def

b K (),
(i+1)/N . 1
M) ([ K=y ko)
i/N n
def

Ye(z) = eN“YP|g|V/2 4 aNI= VP =13 g, z € R.

Since for each n, n='/2K,, is a Brownian bridge, applying Lemma 3.7 to n~ /2K, (instead
of to B) yields that, for n > 1,

]P’( ‘ As(i,n) — co(p) N_l/p|ki n|1/2 ‘ > Y (kin), for some 0 <i< N)

3B i) ol N2 | )

=0

<cisn YINS 4N exp(—2nl/3).

The expression on the right hand side being summable for n, we can use the Borel-Cantelli

lemma to see that, almost surely for all large n and all 0 <: < N —1,
Ao (i) = co(p) N7 ki /2 | < (ki)

Let us apply (3.16) to r = p, x = Ag(i,n) and y = co(p) N~'/P|k; |'/?. For this choice of
(r, z,y), we have y < co(p) Y= (ki n)/e, which implies that, almost surely for all large n and
al0 <1< N -1,

Kt = =) = K0 dt = N[kl BIN)|

(e e (Y k)7
< (e (ki)

< cine N7 kin|? + ;18 NP~ =P/3 |, P,

IA
e}
[
2]
N

where c17 = ¢17(p) and c18 = c15(p) depend only on p. Summing over i gives that, for any

e > 0, when n is sufficiently large,

N—-1 (i+1)/N L N— .
\Z/ Kt - Bm) - i ppar - EA) Z g

o Ji/N n —

N -1
I8 NPt i
S L ML

=0

(3.18)




According to (3.17), for large n,
1\ T P P q
SN ~ Il < K < (mlogy m,

the last inequality following from the Chung—Smirnov LIL, cf. (3.3). Hence, as n goes to
infinity,

—1 ,—p/3 Z 1K (— |p _ (np/6Np(1og2 n)‘J), a.s.,

which, in view of Lemma 3.3 and (3.17), gives that

N—1 . N—1 .
—1,_—p/3 KN _ 1 K
NP—1lp—P ; |Kn(N)|P o(||Kn||g) 0( N ZZ; |Kn<N)|q>'

Going back to (3.18), we obtain: for any 0 < e < 1 and all large n,

N1 /N |
> [ - By - g e EED Z|K a

o Ji/N n

N—-1

c18€Z|K |q+0(]i[Z|Kn<%)|q>'

1=0

Since c¢1g does not depend on ¢, and since € > 0 can be as small as possible, we conclude

that almost surely,

N—-1 .(i+1)/N k. |N|
Kot — =) - K, (t)|Pdt ~ Ko (
S [, S - ) Z|

(3.19) ~ (|N|p) ||Kn||q,

the last line following from (3.17).
We are now ready to complete the proof of Theorem 1.1. Indeed, by (3.15) and
applying Fact 3.4 to a, = 2y/4p + 1n~"/2N~2(log, n)"/?, we have

max sup |Kn(t_@)_Kn(t_Kn<t))|
0<iSN—1 5 /N<t<(i+1)/N n n

= O(n1/4 (logn)Y/?7P(log, n)/* ) a.s.,
which, in view of (3.16), implies that uniformly for 0 <¢ < N —1and t € [i/N, (i+1)/N],

Kalt =5 rcu o e - 20
- O(np/4(log )P/~ (log, n)?/* )

(3.20) + @(n1/4 (log n)'/2P (logy n) /4 (A7(n))P~ ) a.s.,



where

M) sup K, (¢~

0<t<1 n

Recall w,(-) from (3.8). Since || K| < 4/nlog, n almost surely for all large n (cf. (3.3)),
by Fact 3.4, we have, for large n,

Az(n) < w, (n™?(log, n)'/?)
= O(n1/4 (logn)*/?(log, n)*/* ), a.s.

(Actually, it can be deduced from Theorem A that Az(n) ~ (logn)'/2||K,||'/?, which in
turn gives us the exact asymptotics of A7(n). For more details, cf. (A.1.11) of Csorgé and
Horvéth [6, p. 417]). In view of (3.20), and integrating with respect to t € [¢/N, (i +1)/N]

and then summing over ¢, we obtain: almost surely when n goes to infinity,

N1 (1N .
[ =) - Ko
=0 Z/N n
1
= [ |K.(t— sz(t)) — K, (t)|Pdt + O(np/4(logn)_p/2(log2 n)P/4 )
0

Together with (3.19) and (3.5), this gives
1
K, (t)
| 1= 21 — Kot ~ BP)IE s
We have therefore proved (3.14), hence completed the proof of Theorem 1.1. a

To check Corollary 1.4, we need the following estimate.

Lemma 3.8. For any q¢ > 1,

K,
(3.21) lim sup _ 1 Bnllg = c3(q), a.s.,

n—oo /2N ].Og2 n

where c3(q) is defined in (1.6).

Proof. Lemma 3.8 actually is known, cf. Gajek et al. [16] for a direct proof. However, it
turns out that it can also be deduced, by means of a simple argument, from some classical
results for empirical processes via the KMT strong invariance. So we outline the argument

here, which might be of some interest.



That the “limsup” expression in (3.21) should be equal to a constant of particular
form, is a straightforward consequence of Finkelstein’s functional LIL for the empirical

process. In fact, according to Finkelstein [15],

Ky
lim sup —1Enlle

—=———==sup [|fly
n—oo y/2nlogamn  feF

where F & {f: ft) = fgf(s) ds, f(1)=0, fol(f.(s))2 ds < 1} is the so-called Finkel-

stein’s set. Fortunately, to get the exact value of sup;c ||f|l;, we do not have to do

a.s.,

any technical computation. Indeed, Strassen [28] solved a variational problem and calcu-
lated the value of sup;cs || f|lq, where S s 1) = fgf(s)ds, fol(f.(s))2 ds <1} is
Strassen’s set. From this, a simple argument using symmetry and scaling readily yields

the value of sup;cx || f|4, cf. [9] for more details. O

Proof of Corollary 1.4. Follows from Theorem 1.1, Fact 3.1, Lemmas 3.8 and 3.3. O

4. Appendix

Let {X;};>1 be a sequence of real valued independent and identically distributed
random variables with a right continuously defined distribution function F', and let ﬁn()

be the empirical distribution function based on the first n observations, i.e.,

def 1 =
Fn<:1,‘) = E Z]I{Xiﬁx}7 x € R.
=1

Define the general empirical process
(4.1) n(z) & n'?(Fy(z) - F(z)), z€R,

and its “corresponding” empirical quantile process

(4.2) B =R 2 (F M) —F (1),  0<t<],

where

FY) Y inf{z: Fo(z) >t} 0<t<1, F71(0) Y F1(0+),

n n

and similarly F~1(-) in terms of F(-), are the empirical and theoretical quantile functions,

i.e., the inverse functions of F,,(-) and F(-) respectively.



Clearly, with any continuous distribution function F(-) the random variables

{U; = ey (Xi)}i>1 are independent (0, 1)-uniform random variables and, in terms of these

uniformly distributed random variables, we have

(4.3) an(F7H(2) =n'/?(Fu(F7H(1) — 1)
— V2 (F,(t) — ) = an(t), 0<t<l,

as well as

(4.4) n'/? (F(ﬁ;%t)) - t) =2 (FE7NE) —t) = Ba(t), 0<t<1.
Moreover, by the mean value theorem, we can write

(4.5) Ba(t) = n P (FM (6 - F' (1)

where F,1(t) At < 0,(t) < F;Y(t)Vvt, 0 <t < 1, provided of course that we have

“Lt)/dt = 1/f(F71(t)) < oo for t € (0,1), i.e., provided that F is an absolutely
continuous distribution function (with respect to Lebesgue measure) with a strictly positive
density function f = F” on the real line. The function f(F~1(¢)) is called the density
quantile function, and 1/f(F~1(t)) the quantile density function in Parzen [21], [22].

In view of (4.4) and (4.5) it is clear that if one were to study the empirical quantile
process 3, on [0,1] via its (0, 1)—uniform version (3,, then one should renormalize the
former by multiplying it by its density quantile function f(F~!). Hence we assume that
f = F’ exists on the real line and, as in Csorgé and Révész [7], we define the general

empirical quantile process 9¢,, by

(4.6) 0u(t) = F(FHE)Bat), 0<t<1,

with 3, as in (4.2), and the general Bahadur—Kiefer process R, by
(4.7) Ro(®) € an()+6.(t), 0<t<1,

with a,(t) = an (F1(t)) (cf. (4.1) and (4.3)).



Csorgd and Révész [7] initiated the study of the almost sure asymptotic behaviour of
the processes 9,, and R,, under the following assumptions on their underlying distribution

function F:

(4.8) (i) F is twice differentiable on (a,b), where 0 sup{z : F(z) = 0},
b inf{z: F(z) =1}, —c0c <a <b < o0,
(i) F'(z)=f(z) >0, z¢€(ab)
(iii) for some constant v > 0 we have
t(1— ) (F ()]
su <,
O<t121 fPETHR)) =7

(iv) the two limits A li{n f(z) and B o 111%)1 f(z) are finite, and

(iva) both limits A and B are positive, or
(ivb) if the limit A = 0 (resp., B = 0), then assume also that the density
function f is nondecreasing on a right neighbourhood of a (resp.,

nonincreasing on a left neighbourhood of b).

Under these conditions Csorgé and Révész [7] show that the general empirical quantile
process d, of (4.6) is almost surely o(n~/?*%) near, with any small £ > 0, to the uniform

empirical quantile process 3, of (4.4) in the uniform sup-norm || - ||. This, in turn, on
account of (cf. Ry, and R, via (4.3) and (4.4))

(4.9) {R.(t) = Ra(t); 0<t<1,n=1,2,...}
= {6,(t) = Ba(t); 0<t <1, n=1,2,...},

leads to an extension of the Bahadur—Kiefer theory of quantiles for R,, under appropriate
subsets of the just listed conditions in (4.8). For related details of these extensions we refer
to Csorgd and Révész ([7], [8, Sections 5.2 and 5.3]), Csorgé ([5, Chapter 6]), Csorgd and
Horvath ([6, Section 6.5]), and Csorgd and Szyszkowicz ([10, Section 5]). In particular,
as an extension of Theorem A and that of its consequences, we have (cf. Csorgd and
Szyszkowicz [10, Theorem 5.1 and Corollaries 5.A and 5.B]) the following conclusions. For
brevity, we write from now on:

Sn(t) = Ry(t) Uiy )<t <n/(nt1)}s 0<t <L

Theorem B. Given the conditions (4.8) (i), (ii) and (iii) on F, we have

(4.10) lim n1/4(logn)_1/2M =1, a.s.,

n— 00 ||an||



(4.11) limsupn'/*(logn)™"?(og, n)~/*(|S,|| = 274, a.s.,

N 1/2
(4.12) lim inf '/ (log n) /2 (log, n) /]| S, | = ;T a.s.,
and, asn — oo,
_ _ ~ D
(4.13) n~ 4 (logn) =[S, || — VI B,

where {B(t); 0 <t <1} is a Brownian Bridge.
Moreover, if in addition to the conditions (4.8)(i),(ii) and (iii), we have also (4.8) (iv)
and (iva), or (4.8) (iv) and (ivb), then (4.10)~(4.13) remain true for R,, in the place of S,,.

Along similar lines now, as an extension of Theorem 1.1 and that of Corollary 1.4, we

have also the following theorem.

Theorem 4.1. Let 2 < p < oo and ¢ = p/2. Then, assuming the conditions (4.8) (i), (ii)

and (iii) on F', we have

S
(4.14) lim nl/4w = co(p), a.s.,
noee s/ lamlly
(4.15) limsupn =4 (logy n) 4|8, |l, = 2% co(p)\/c3(q), a.s.,
(4.16) lim inf n'/* (log, n) VY S, |, = co(p)V/ea(q),  as.,

and, asn — oo,

= D
(4.17) 0! Y|Sll — co(®)y/ 1Bl

where {B(t); 0 <t < 1} is a Brownian bridge, and co(p), c3(q) and c4(q) are as in (1.5),
(1.6) and (1.7) respectively.

Moreover, if in addition to the conditions (4.8) (i), (ii) and (iii), we have also (4.8)
(iv) and (iva), or (4.8) (iv) and (ivb), then (4.14)-(4.17) remain true for R, in the place
of §n,

Remark 4.2. For the sake of applications of Theorems B and 4.1 to goodness-of-fit
problems, we call attention to (4.13) and (4.17), as well as to their respective versions
without the indicator function ¢ — 11 /(n41)<t<n/(nt1)}- In particular, it is of interest to
note that we have (1.9) in terms of (4.13), as well as (1.12) in terms of (4.17) with p =4



and ¢ = 2, which both accommodate the whole random sample X1, Xo,..., X, of size
n > 1 on F under the conditions (4.8) (i), (ii) and (iii). Moreover, from the goodness-of-fit
point of view in general, (1.10) in terms of (4.17) is a brand new alternative to (1.9) in
terms of (4.13).

Proof of Theorem 4.1. Let K,, be as in (3.2). We have (cf. Csérgd and Szyszkowicz [10,
Theorems 5.2 and 5.3 respsectively]): as n — oo, under the conditions (4.8) (i), (ii) and
(iii) on F,

Ky — Kn(- — 1K)
N

and, on assuming also (4.8) (iv) and (iva), or (4.8) (iv) and (ivb),

(4.18) H S, —

‘ = O(n_g/s(log n)**(log, n)l/s), a.s.,

K, — Kn(- —n 'K,
/n

Consequently, the rest of the proof of (4.14) of Theorem 4.1 is identical to that of Theorem
1.1, while the respective proofs of (4.15) and (4.16) are now similarly contained in that of
Corollary 1.4. a

(4.19) H R, —

H = O(n_3/8 (logn)/4(log, n)l/s), a.s.
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