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Abstract

We use the Fourier transform to embed the («,d, 1) superprocess in appropriate
Sobolev spaces and obtain pathwise regularity results using maximal inequalities for the
expected value of the supremum of “Ornstein-Uhlenbeck like” processes. Our techniques
also give simple proofs of fluctuation theorems for the Brownian density process and a
rescaling of the superprocess.

1 Hilbert Space Regularity Results

Among the results in a fundamental paper, Dawson [1972], the following situation was con-
sidered.

H is a Hilbert space with orthonormal basis {ex}$°. A is a linear operator satisfying
Aey, = —Mper where, for all large k, there exist a,b,d > 0 with ak!*® < X, < bEM, {b.(1)}°
is a sequence of standard Brownian motions and

= kioz $k<t)6k

where

t
() = / e~ M=) g (5)

0
is an Ornstein-Uhlenbeck process. Since E[zi(t)] = (1 — e=*)/(2)\x), P(X(t) € H) =1 for
each fixed ¢t > 0. In fact, noting (I — A)Ye, = (1 + Ap)Ves, it’s true that P((/ — A)PX(t) €
H)=1ifv < §/]2(1+6)]. Using a result of Newell [1962] which provides asymptotic estimates
on the tail probabilities of 1-dimensional Ornstein-Uhlenbeck processes, Dawson showed that
for any ¢’ < d and T > 0,

ZP ( sup z3(t) > ’C_(IMI)) < 00;

0<¢<T
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with Borel-Cantelli this shows that
P(I-AYX € C([0,00): H)) =1

if v < d/[2(1 + 6)].

In Blount and Bose [1997] the outline of Dawson’s approach was applied to obtain Hilbert
space regularity for the (o, d, 1) superprocess (see Dawson [1993]) by using Fourier transform
techniques. The problem of having a continuous spectrum in contrast to the discrete case just
considered was dealt with by breaking the parameter space into suitable blocks and obtaining
a system of stochastic differential equations. These have a structure somewhat similar to the
equations resulting from applying Ito’s formula to (), the square of an Ornstein-Uhlenbeck
process. A maximal inequality was developed for the tail probabilities of the supremum
over t € [0,T] of the processes; and a Borel-Cantelli argument yielded regularity results
by embedding the Fourier transform of the superprocess in an appropriate Hilbert space.
In this paper we reprove one of the results of Blount and Bose using a different argument
(Theorem 1.1). We develop two maximal inequalities (Lemma 1.3) for the expected supremum
of “Ornstein-Uhlenbeck like” processes and use these in place of estimating tail probabilities.
We also prove a result showing on a pathwise basis that the superprocess cannot have point
masses for t > 0. Although this has been proved by other means, it follows naturally from
our results. In addition we rescale the superprocess to obtain a fluctuation theorem. We also
prove a fluctuation theorem for the Brownian density process. Both of these are done very
simply and naturally using Fourier transform techniques and Sobolev spaces as state spaces.

We now introduce some basic notation. Let M be the space of finite positive measures on
R¢ topologized using the Prohorov metric, d (see Ethier and Kurtz [1986]). C([0, 00) : M)
is the set of continuous Mz-valued processes with topology defined by v,(-) — v(-) if and
only if supg<;<r d(va(t),v(t)) — 0 for each T' > 0. Our probability space, (€2, P), consists
of Q = C(|0,00) : Mz) with P being the distribution of the (a,d, 1) superprocess (which is
subsequently defined).

For x,0 € R?, let e_g(x) = e and, for v € Mg, D(0) = v(e_g) = [pac_o(x)r(dz).
For v € R, let H, = {g : [ra|g(@)?(1 + |0]*)"df < oo}; here | - | denotes the modulus of a
complex number. C([0,o0) : H,) is the space of continuous H.,-valued processes topologized
by the seminorms supg;<r |[A(t)|l, for T > 0. Note that Hy = La(R?), and that for v <
—(d/2), C(]0,00) : Mgz) embeds continuously into C'([0,00) : H,) by identifying {v(t)}0
with {0(t,0)}i>09ere. We use the notation v(f) = [ra f(2)v(de) for v € My and f an
appropriate function.

For 0 < a < 2, let A, be the fractional Laplacian satisfying Ase_o = —[0|%c_g (|0] is the
Euclidean norm).

If X(0) € Mz and E[X(0,1)] < oo, then for any bounded continuous function f with two
bounded continuous derivatives, the («, d, 1) superprocess has sample paths in C'([0, 00) : M£)
and solves the martingale problem

X(t, f) = X(0, f) + /;X(s, Aaf)ds + M(t, f) (1.1)

where M (-, f) is a continuous, square-integrable martingale with respect to o(X(s) : s < 1)
and has quadratic variation process

M0 = [ X, s (12)
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Letting X (t,0) = X (t,e_g) and M(t,0) = M(t,e_g), we obtain

N N to. ~
X(t,0) = X(0,0) |9|a/ X(s.0)ds + M(t,0), (1.3)
0
where M (t,0) is a complex martingale satisfying
R ¢
[Re M(,0)(1) = [ X(s,cos(0- ()])ds (1:4)
0
and .
m M, 0)](t) = [ X(s,5%0 - (-)])ds, (1.5)
0
Using variation of constants we rewrite (1.3) as
X o ¢ .
X(1,0) = e X(0,0) + / =) g (5, ). (1.6)
0
Letting S,(t) be the Feller semigroup generated by A, and noting S,(t)e_g = e PI"e_y, we
also denote (1.6) by
t
X(1) = S.()X(0) + / Sult — 8)dM(s), (1.7)
0

and we set .
Y(t) = /0 Sult — 8)dM (s).

We can interpret each term in (1.7) as a measure (or signed measure) which has a Fourier

transform given by the corresponding term in (1.6). Also (1.7) can be interpreted as holding
in C([0,T] : Hy) for any v < —(d/2) and T > 0. Likewise (1.3) can be interpreted as

X(0) = X0+ [ " ALX (s)ds - M(L), (1.8)

which holds in C(|0,T] : H,) for v < —(d/2) and T" > 0; this is because the equation is
an identity for the Fourier transforms, and all but the integral term are in this space (so all
terms are). That M is in this space follows from Doob’s quadratic maximal inequality and
continuity in ¢ (for fixed 6) of M(t, ). The regularity of (1.7) can be considerably improved
using subsequent Lemma 1.3. R

Note that X (¢, ) is continuous in each variable separately. The following lemma shows X
is jointly continuous in ¢ and 6, and by (1.3) and (1.6) this also holds for M and Y.

Lemma 1.1 Ifv € C([t1,t2] : Mg), then 0(t,0) is jointly continuous in t and 6.

Proof Consider

|0(t,0) — (to, 0o)|

< [p(t,0) = (L, 00)| + [(t. 00) — (to, bo)|
< )+

sup v(t,|eg—g, — 1|) + |2(t,00) — D(to, O0)|.

t1<t<t2

If (¢t,0) — (to,0o), the second term goes to 0 by assumption. Note {v(¢)}, <i<t, is a compact
set in M and therefore is tight. Also,

leo—ao () — L[ < (10 — ol|x[) A 2.

These facts imply the first term converges to 0 if § — 6. ]
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Lemma 1.2 [fm(t) is a continuous, mean 0, martingale with quadratic variation process

ml(1) = [ hls)ds < clr),

where c(t) is deterministic, then, for a >0,

P(@Sﬁggﬂ Im(t)] > a) < 2exp (— 2;;) :

Proof For € R,

9

B [o/m-0*/)] < {eamw)—(e?/m IS h(s)ds} L

where the equality follows from Novikov’s theorem. Thus E[e?™(#)] < e <)/2,
If0>0anda>0,

IA

E |:60m(,u):| e~ 00

0<t<p

P ( sup m(t) > a)

o(c(1)6%)/2)—0a

< exp ( :
2c(p)

using Doob’s submartingale inequality, Markov’s inequality, and minimizing over #. The same
argument with —m(t) proves the lemma.

IA

Lemma 1.3 Assume m(t) is a continuous, mean 0, martingale with quadratic variation pro-
cess

ml(t) = [ o(s)ds.

(a) If supoc,<7 9(s) < ¢, a deterministic constant, then

o0 = [ e ()

satisfies

e 0

0<t<T

8ceT log(4/3) i8> 1.

16¢T if3>0
B
B

(b) If p>1 and supy. .7 E[g"(s)] < oo, then

c(p)TP SUDo<¢<T Elg(t)] if 32>0

2
. LzltlgTy p<t)] = ep)e supociar Blon(1)]
prt

if 32> 1;

and
B [ sup yQ(t)] < e(p,T) sup (E[g?(t))VP(1 A g~0=A/PDY,

0<t<T 0<t<T



Proof Consider y(t) restricted to a <t < b and note

y(t) = e‘ﬁt{/oa ePrdm(u) + /at eﬁ“dm(u)}

Thus

a t
() s ()] | e+ sup | [
0 a

a<t<b a<t<b

First we prove (a).
Applying Lemma 1.2 to each term shows

_ 2 2 _ 2 2
P(Sup |y(t)|261> < Q{GXP {% +exp %”
a<i<b 20( % ) 20( > )
—Bq*
< dexp [W :

Assume > 1 and choose n such that n < § <n+ 1. Set tp = (kT /n) for 0 < k < n. Then
our last result implies

—ﬂqj

deedT |7

P( sup |y(t)|2q> §4exp[

b <t<tp+41

Thus, since n < 3,

P(gup Iy(t)|ZQ> < SP( sup |y(t)|2q>

0<t<T k=0 tn <t<tpt1
—0q°

< 4fex .
< 4fexp [ TeoiT

We have, for any ¢ > 0,

E [ sup yQ(t)] - /0°°P ( sup 2(1) > a) da

0<¢<T 0<t<T

q 0
< -
< /0 1da+/q 43 exp [40644 da
—ﬂq]

= 16ce*” :
g+ 1bce™ exp [40@“

Minimizing over ¢ (basic calculus) gives the bound of

] < 4eetT (1 +10g(4ﬁ)> - 8cet log(413)
- B - B

Now assume (3 > 0. Then, using integration by parts,

¢ 0

0<t<T

y(t) = m(t) — ﬂ/ot m(s)e P2 ds,
5)



Thus |y(t)| < 2supy<,<; [m(p)| and the bound follows from Doob’s maximal inequality. This
proves (a).

Now consider (b) and assume 3 > 1. Applying Burkholder’s inequality to () followed by
Jensen’s inequality shows

E [Sup Iy(t)l%] < C(p)EK /0 ’ e—%(“—“>g(u)du)p+ ( /abeww—a)g(u)du)p]

a<t<b

_ ,—2Ba\P 28(b—a) __ p
< )| s Bl () s Bl
< o) sup Elg?(u)]e* =57,

0<u<b

Choosing n and {t;}7_, as in the proof of (a), we obtain

E[wpf%ﬂgmmeWWWWw

t <t<tpri1 0<t<T

Thus, recalling n < (3,

E[Sllp yQP(t)] < SE[ sup yQP(t)]

0<t<T p— T St<tpy1
< c(p)e™™ sup Blgn(t))5~" Y.
0<t<T

Now assume > 0. As observed in the proof of (a), |y(t)| < 2supy,<; |m(u)| and the bound
in (b) for # > 0 follows from Burkholder’s inequality.

The inequality for E[supy<,<7y*(t)] follows from the first result and Jensen’s inequality.
n

Lemma 1.4 Assume F[X(0,1)] < occ.
(a) If r, = inf{t : X (¢, 1) > n} forn = 1,2,..., and Y,,(t) = [} So(t — s)dM (s A T,), then, for
T>0andvy<(a—d)/2,

/Rd E [ sup |Ya(t, 9)|21 (1+0]*)do < .

0<t<T
(b)
Y 2 2\y _
P (/RdozltlgTD/(t,ﬁﬂ (14 10]?)do < oo) —1
if v < (a—d)/2.
Proof From (1.1), since 4,1 =0,
BIM2(1, 1) = F [/Ot)qs, l)ds} —LE[X(0,1)]

and

E [ sup X(t,l)] < E[X(0,1)]+2 (E [ sup M%)DU2

- < E[X(0,1)]+4 TE[;(EOJ)L
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using Doob’s inequality.
Thus 7, T oo almost surely.
Consider Yy, (¢, 0) = [1e 1" dM (s A 7, 0) and observe

[RGM(- A Try D)(t) = /Ot Tjo,m(8)X (5, c08%[0 - (+)])ds.

Note the integrand is dominated by n. An analogous result holds for [ImM (- A 7, 0)](2).
Thus, by Lemma 1.3,

E | sup 7.00)2| < no(m (1420880
osist oF
This shows the integral in (a) is bounded by

ne(T, d)/ (1 A bﬂ) (1 +r3ri=tdr,

re

which is finite if v < (o — d)/2. This proves (a).
Let v < (o — d)/2 and set

_ 2\ .
A, /R sup [Yo(t, 0)[2(1+ [0]2)do;

4 0<t<T

_ 2\
A = /R sup [V(t, 0)]2(1 + |0]2)do.

4 0<t<T
By (a), P(A, < o0) =1 for all n, and 7,, T 00 a.s. implies
P(A, # A infinitely often) = 0.
Thus P(A <o) =1. 1

Theorem 1.1 Assume FE[X(0,1)] < oo and T > 0. Then
(a) L
PY eC(0,T): H))=1ify< T

(b) P(X € C([0,T] : Hs)NC((0,T]: H,)) =1 ify < (a—d)/2 and § < —(d/2).
Proof X(t) = S.(t)X(0)+ Y (t). Since |e7?I"*X (0, 0)| < e~1?1"*X(0,1) it follows easily that

(b) holds with S,(¢)X (0 ) in place of X. It suffices now to prove (a).
Consider, for 0 < s, t < T,

YO =Y = [ 1V00) =Y (s, 01+ 07y ds.

Almost surely, Y(u, 0) is continuous in p for each fixed . By (b) of Lemma 1.4 we can apply
the dominated convergence theorem to the last integral and obtain

P (lirr% IV (E) = V()]s — 0,0 < st < T) S
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By conditioning on X (0), the assumption F[X (0, 1)] < oo in Theorem 1.1 can be weakened
to require X (0) € Myz. We could also have used Lemma 1.3(b) in place of Lemma 1.3(a).
In particular, if F[X(0,1)?] < oo for p > 1, then applying Burkholder’s inequality shows
sUpg< <7 L[ X (£, 1)?] < 00, and by Lemma 1.3(b),

E [ sup ||Y(t)||3] < /RdE [ sup |Y(t, 021+ |0]*) | do

0<t<T 0<t<T
< oTop) [ (1 AL0]= 00 (o) do
R4

a(l —(1/p)) —d
; .

By conditioning on X (0), we may assume X (0, 1) has moments of all orders, and Theorem 1.1
would follow as before. ]

Note that Theorem 1.1 shows that for d = 1 and a > 1, almost surely for all £ > 0 X
has a density that is somewhat “smoother” than functions in Hy = L*(R). In subsequent
Theorem 1.2 we show that almost surely the (o, d, 1) superprocess cannot have any point
masses for ¢ > 0 and any value of a and d. While this result would follow from known results
on the Hausdorfl dimension on the support of X, it may be of interest that it follows from
basic harmonic analysis and the fact that

< xwifvy<

/ sup | X (t,0)*(1 + |0*)"4%d6 <
R

d s<t<T
almost surely for any 0 < s < T. Also, as just discussed, the assumption E[X(0,1)] < o
could be replaced by X (0) € M.

Lemma 1.5 (a) Ifv € C([s,t] : Mg), then

sup 3 v {a})? = sup lim @N)™ [ (s ).

spst V=00

/R sup [0, 0)]*(1+ 0]*)~/?d6 < s,

?s<p<t
then Supsg,ugt ZaGRd V(M? {CL})Q = 0.
Proof Let v € Mg. Note [0(0)]* = [raypa oy — z)v(dz)r(dy). Then Fubini’s theorem

shows
Ny [

[_NrN]d

POFd0— [ In(wy)w(dov(dy)

Rix R4

where, for z = (z1,...,2z4) and y = (y1,...,Yaq),

In(z,y) = k:];[1 Sinjiszféjk__ygk))

converges boundedly and pointwise to

1 ifzx=
I(:z:,y){ 0 else. !



This proves (a). For any k > 0, the right hand side of the equality in (a) can be bounded by

lim (2N)_d/|0 sup |7(u, 0)[d0 + ¢(d) /Ia sup |0, 0))2(1 + [0]2)~%/2do,

Nooo |<k s<p<t [>k s<p<t

The limit term equals 0 and, under the assumption in (b), by choosing k large, the second
term can be made arbitrarily small. This proves (b). |

Theorem 1.2 [f E[X(0,1)]| < oo and we replace (S0, P) by its completion, then

P(Z X(t,{a})QOfort>0) = 1.

a€Rd

Proof ForO<s<t<T,

sup |X (¢, 0)” <
s<t<T

DO | —

<e—lf’l‘*sx<o, 1)+ sup |Y(t, 9)|2) .

s<t<T

By Lemma 1.4(b),

(x) P (/R sup | X (¢, 0)2(1 + |0*)"%do < oo) = 1.

d s<t<T

Thus, by Lemma 1.5,

(xx) P ( sup > X(t,{a})* = 0) =1,

sStT e pa

since the event in (#*) contains the event in (%) which is measurable by Lemma 1.1. The
theorem follows by letting s = (1/n), T = n and letting n — oc. B

2 Weak Convergence Results

In this section we prove two fluctuation theorems using the techniques of Section 1. We rescale
the (o, d, 1) superprocess to obtain the first result, and then examine the Brownian density
process first studied by Ito [1983].

Let X be the (o, d, 1) superprocess, and for € > 0, let

Xe(t, f) = "X (7, f(e)).

From (1.1), we obtain the analogue of (1.3),
X.(1,0) = X.00,0) — o | "X (s,0)ds 1 (2N (1, 0), (2.1)
where M. is a continuous, square-integrable martingale with respect to o(X.(s) : s <t) and
M DI = [ X, ). 2.2)
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We make the following assumptions in order to prove a fluctuation theorem and law of

large numbers.
d>a, 0<e<1 and €¢—0. (2.3)

Remarks If d = «, then essentially the same process is again obtained. If ¢ — 0 and d < «,
then assuming conditions that force convergence of X, (0, 1), only convergence to the 0 process
(for t > 0) is obtained. This is because

X (t,1) = X(0,1) + =27 (¢,1) and [Me(-,l)](t)/otXe(s,l)ds

Thus X.(¢,1) is a critical branching diffusion, and, if d < «, the variance becomes infinite as

e — 0, forcing extinction for ¢ > 0. This can be seen from computing the Laplace transform
of X (t,1).

Lemma 2.1 Assume p>1 and sup, E|X?(0,1)] < ¢. Then

sup F [ sup XP(t, 1)] < (T, p).

€ 0<t<T

Proof Setting @ = 0 in (2.1) and using (2.2) and Burkholder’s inequality, we obtain

E [ sup Xf(t,l)] <! [E[Xf(o,l)wc(p)E Ked—a / tXe(s,l)ds)p/QH.

0<t<T

The result then follows from basic computations and Gronwall’s inequality. ]
By analogy with (1.7), we can write

X (1) = Sa(t) X (0) + 4=y (1), (2.4)

where

- "Gt — $)dM.(s).

Lemma 2.2 [fsup, F[X.(0,1)] < oo, then
(a) the distributions of M. are relatively compact on C([0,00) : H,) if v < —d/2.
(b) The distributions of Y. are relatively compact on C(|0,00) : H,) if v < (a — d)/2.

Proof Let Ff = o(X(s): 0 <s <t)and consider, for 0 <t <t+pu <T and u <4,

E[[|Mc(t + p) — Mc(@)[151F7] :/ E[|M(t + p,0) — Mc(t, 0)P|F] (1 + |6])d6

- /R/ ds(1+ |0]2)do

< 5[ w0 X6 1)) cIr

0<s<T
- E[A€<57 T)|Ft€]7

where Ac(0,T) = supp<,<r Xe(s, 1)c(7)d satisfies, by Lemma 2.1,

%ir% sup F|A(6,T)] =0
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(a) then follows from Kurtz’s tightness condition, Theorem 3.8.6 of Ethier and Kurtz [1986].
Let 7.(e) = inf{t : X.(¢,1) > n}. Using Lemma 2.1 and Markov’s inequality,

P(r0) < T) = P sup X,(1.1) 2 n) < “8)

Thus it suffices to prove (b) with
t
Y, (1) = / Sult — 8)AM. (7a(€) A 5)
0
in place of Y. Consider, for 0 <t <t+ pu <T and pu <9,

Vielt 1) = Yielt) = (Sus) = Do) + [ St o+ = )M, () A 8).

Thus,
El||Yae(t+ 1) = Yo O3]
1 N N
< = —101%e _ 1)\2 2 2\v e:|
< B[ DT 0P 1 (oY ol
1 e —2|0]|> —s €
5 M (/t o201 (s >1[0,Tn(6)](s)xe(s,1)ds) (11 (6] do| F:
< E[A(0,T)|F]
where
A0, T) = / (e7lo1% _1)2 ( sup |Yn,€(t,9)|2> (1+ |0])do
R4 0<t<T

1 — 6—2|0|°‘6 )

Using Lemma 1.3 exactly as in the proof of Lemma 1.4(a) shows
B [ sup [Vo.(t, e)ﬂ < na(T, 0),
0<t<T

where
/ a(T,0)(1 + |02 do < O(T, ).
Rd

Thus, lims_gsup, F[A(T,d)] = 0 by the dominated convergence theorem and (b) also follows
from Kurtz’s tightness criterion. ]
We can now prove a law of large numbers for X..

Theorem 2.1 Assume sup, E[X.(0,1)] < oco. Let ¥(0) € Mg be deterministic and assume
X.(0) & (0) as Mg valued random variables. Then for any T > 0,

S [1Xe(0) = Sa()0(O)]], 50
if v < —(d/2), and, for any 0 < s <T,
sup || X.(t) — Sa(t)(0)]], 0

s<t<T

if v < (a—d)/2.
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Proof || X.(0)—v(0)||, L 0if v < —(d/2). The result then follows from Lemma 2.2(b) and
(24).  n

We now prove a fluctuation theorem for X.. For a deterministic ¢(0) € Mz, let

U(t) = Sa()¥(0), (2.5)
and
Ve(t) = =D2(X(t) = (1)), (2.6)
Then .
Vo) = Vi(0)+ [ AaVils)ds + M.(1), (2.7)
and, from (2.4),
Ve(t) = Sa(t)Ve(0) + Ye(2). (2.8)

For the moment (2.7) and (2.8) can be considered as identities for the Fourier transforms

without regard to regularity in particular spaces. We can now state a fluctuation theorem for
Xe.

Theorem 2.2 Assume sup, E[X.(0,1)'°] < oo for some § > 0, and V,(0) <, V’(0) in H,,
for some vo < —(d/2). Then (V., M.) % (V, M) in C(|0, o0) : H.,,xHz)NC((0,00) : H,x Hp)
if < —(d/2) and v < (a« —d)/2 and (V, M) has the following properties.
M is a Gaussian martingale and martingale measure with respect to the filtration o(V (s) :
s <1t). M has independent increments and, almost surely, sample paths in C(|0,00) : Hg) if
—(d/2). If f is a continuous and bounded function, then M(t, f) has quadratic variation
process

= [t ss. (2.9)
The equation

V() = Su0V ) + | "t — )M (s) (2.10)

holds almost surely in C(|0,00) : H,, ) NC((0,00) : Hy) if v < (e —d)/2.
The equation

t
V() = VO)+ [ AV (s)ds + M(2) (2.11)
0
holds almost surely in C(]0,00) : Hy,). V(0) L V1(0) and V(0) is independent of M.

Proof By Lemma 2.2, (2.7), (2.8) and the continuous mapping theorem, (2.10) and (2.11)
hold for any distributional limit of (V, M,).
Suppose f is a C'* function with compact support, and consider (V;, M (-, f)) and

(Vs M2, ) = [ Xl = (Ve M2, ) = [ (s, f2) 4 2V (s, f2)]ds).

By Lemma 2.1 and Burkholder’s inequality, the martingales are uniformly integrable. By
problem 7 in Chapter 7 of Ethier and Kurtz [1986], any distributional limit (V, M) will satisfy
(2.9) with f; by standard arguments this extends to any continuous bounded function. Since
M has deterministic quadratic variation, it’s Gaussian with independent increments (Lévy’s

12



theorem); and the other properties follow from the quoted problem of Ethier and Kurtz. M
is thus unique in distribution, but integration by parts shows

V() = SOV O) + M)+ [ " ALSa(t = $)M(s)ds.

Thus V and M are unique in distribution. ]

We now prove a law of large numbers and fluctuation limit for the Brownian density
process.

Let {B.(t)}?_; be independent standard Brownian motions in R? with some initial distri-
bution, and let

1 n
AN 9212
- ;;1 Bu(t) (2.12)

where ¢, is the probability measure with unit mass at a. Let A be the Laplacian and f a
continuous, bounded function with two bounded and continuous derivatives. By Ito’s formula,
X,, satisfies

Xt f) = X.(0, f) +/ ( )ds+n—1/2M (t, ) (2.13)

where M, (-, f) is a continuous martingale with respect to o(X,(s) : s <t) and has quadratic
variation

t
(Ml PN = [ Xl |9 2)ds: (2.14)
here V f is the gradient of f.
Letting f = e_p we obtain
2
Xn(t,0) = X, (0,0) — |92| / Xn(s,ﬁ)ds +n Y2ML(L,6), (2.15)
0
where M, is a complex martingale satisfying
~ t
[Re Ma(-, 0)|(1) = |9|2/ Xa(s,sin®[0 - (-)])ds (2.16)
0
and .
[Im Mn(, N](t) = |9|2/ Xoa(s,cos?[0 - (-)])ds. (2.17)
0
We also have
X (t,0) = P2 K (0, 9) +/ ~(0P/2(=) g (5, 6). (2.18)

Let S(t) be the Feller semigroup generated by A/2. Then as before we denote (2.15) and
(2.18) by

X +/ 5 Xals)ds +n™2M, (1) (2.19)

and

X (t) = S()X,.(0) + n~ Y2V, (1) (2.20)
where

vt = [ "S(t — 8)dMa(s).

Since X, (t,1) = 1, we do not need any moment assumptions. The proofs are essentially
identical to the previous results of this section but simpler without the need to compute
moments. Thus we largely just describe the results.
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Lemma 2.3 (a) The distributions of M, are relatively compact on C(|0,00); H,) if v <
—(d/2) —1.

(b) The distributions of Y, are relatively compact on C([0,00) : H,) if v < —d/2.
Proof Exactly as for Lemma 2.2 without the need for stopping times. ]

Theorem 2.3 If X,,(0) EiN ¥ (0) in Mg, then for any T > 0,

sup || X (t) — S0 (0)]], 0

0<t<T

ifv < —(d/2).

Proof This follows from (2.20) and Lemma 2.3(b). g
For deterministic ¢ (0) € Mz, let

b(t) = S(t)(0), (2.21)
and
Va(t) = vn(Xa(t) — ¥ (1)). (2.22)
Then LA
Vi(t) = Vo (0) + /0 3 Vals)ds + Ma(0) (2.23)
and, from (2.20)
Va(t) = S(t)V,(0) + Y. (2). (2.24)

We now state a fluctuation theorem for V.

Theorem 2.4 Assume V,(0) % V'(0) in H.,, for some ~ < —(d/2). Then (V,, M,) <,
(V, M) in C(]0,00) : Hyy x Hz) NC((0,00) : H, x Hg) if B < —(d/2) — 1 and v < —(d/2),
and (V, M) has the following properties.

M is a Gaussian martingale with respect to the filtration o(V (s) : s <t). M has indepen-
dent increments and, almost surely, sample paths in C([0,00) : Hg) if § < (—=d/2)—1. If f is
continuous and bounded with one bounded, continuous derivative, then M (-, ) has quadratic
variation

M0 = [ 05,1V 1),
The equation

V() = S0V )+ | 'St — s)dM (s) (2.25)
holds almost surely in C(|0,00) : H,,) NC((0,00) : H,) if v < —(d/2). The equation

Vi) -Vt [ SV()ds + M(1) (2.26)

holds almost surely in C(|0,00) : H,) if v < —(d/2) — 1 and v < . V(0) L V'(0) and V(0)
1s independent of M .
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Proof The proof follows from Lemma 2.3, (2.23) and (2.24), exactly as the proof of Theo-
rem 2.2 used Lemma 2.2, (2.7) and (2.8). 1

The scaling used for Theorems 2.1 and 2.2 is used for proving a fluctuation theorem
and law of large numbers for a more complex particle model in Dawson, Fleischmann, and
Gorostiza (1989). Their initial measure is infinite and the state space is the standard space
of tempered distributions. One advantage of using the Sobolev-spaces {H,} is that it avoids
technical difficulties arising from the fact that A,g is not rapidly decreasing if ¢ is but o < 2.
Of course if the initial measure (such as Lebesgue measure) does not have finite total mass,
its distributional Fourier transform cannot be interpreted as a function of 6. In Blount and
Bose (1997), this problem was avoided by first applying a suitable weighting function of the
form ¢,(z) = (1 + |z|*)7?, for p > d/2, to give the measure finite mass. The weighted
measure satisfies an equation analogous to (1.3); but additional perturbation terms arise from
applying “Leibnitz’s” formula to A.(gp,e—9). Because of technical complexity we have not
used this approach here, but there doesn’t appear to be any reason why it wouldn’t work for
the results in section 2 with suitable initial measures of infinite total mass.

The Brownian density process was studied in Ito [1983]. As a special case of a Mckean-
Vaslov limit it is examined in Kallianpur and Xiong [1995], example 8.5.3. It is also examined
(and named) in Walsh [1986]. By using the spaces {H,} we are able to obtain very precise
results on the regularity of the approximating and limiting processes, and the convergence
results become technically very simple.

Finally, we note that versions of Lemma 1.2 and Lemma 1.5a are standard in the literature.
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