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Abstract

In this article we propose two procedures for combining a number of individual classi�ers

in order to construct more e�ective classi�cation rules. The e�ectiveness of the new pro-

cedures, as compared to those of the existing methods, is assessed via detailed simulation

studies.
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1. Introduction

In this article we consider the following standard multigroup classi�cation problem.

Let

Tn = f(X1; Y1); � � � ; (Xn; Yn)g

be a training sample of size n, where Xi 2 <d is called the feature or predictor vector

and Yi 2 f1; � � � ; Kg is the class membership associated with Xi. Here we assume that

(Xi; Yi)'s are iid random vectors with a common distribution FX,Y. Let (X; Y ) be a new

observation from FX,Y whose class membership Y is to be predicted. When the parent

distribution FX,Y is completely known, one would predict Y by �nding a classi�er g (i.e.,
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a map from <d to f1; � � � ; Kg) for which the misclassi�cation error err(g),

err(g) = Pfg(X) 6= Y g;

is as small as possible. Let gB be de�ned by:

PfgB(X) 6= Y g = inf
g: <d!f1;���;Kg

Pfg(X) 6= Y g;

i.e., gB attains the smallest misclassi�cation error rate. Then gB is called the Bayes

classi�er. Unfortunately, in practice, FX,Y is unknown and therefore gB cannot be found.

The goal is then to �nd a data-based classi�cation rule gn, based on the training sample

Tn, whose conditional misclassi�cation error

errn(gn) = Pfgn(X) 6= Y j Tng

is somehow as small as possible. If gn satis�es the condition

errn(gn) �!p err(gB); as n!1;

then it is said to be Bayes consistent. When the above convergence holds w.p.1, then gn

is said to be strongly consistent.

In practice it is not clear as to how one should choose a classi�er; this is particularly

true in nonparametric situations. Of course, it is true that a uniformly consistent classi�-

cation rule gn (i.e., gn satis�es supFX,Y errn(gn)!p err(gB)) tends to perform reasonably

well in most cases; however, given a few di�erent such consistent rules, it is not clear at

all as to how to choose the "best" one. An even more realistic diÆculty in choosing a
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classi�er deals with the fact that di�erent classi�ers have di�erent merits and, as a result,

in a given situation, one classi�er can perform better than another one. More speci�cally

consider the following typical situation. Suppose that there are 3 classes, two of which are

approximately multivariate normal distributions, and the third class is non-normal. Then

Fisher's linear or quadratic discriminant analysis might work best for separating the �rst

two classes (the normal distributions), while a k-Nearest Neighbor rule is perhaps more

appropriate in the non-normal case. This example suggests that perhaps one should con-

sider methods that somehow combine (implicitly) the best features of di�erent individual

classi�ers.

In this article we advocate methods for combining di�erent classi�ers in order to

develop more e�ective classi�cation rules. Here, more e�ectiveness means (at least in an

asymptotic sense) higher predictive power or, equivalently, lower misclassi�cation error

rate. In the next section we consider a number of procedures for combining di�erent

classi�ers. Some relevant work are those of Breiman (1995, 1997), Mojirsheibani (1997,

1998a,b), LeBlanc and Tibshirani (1996), and Wolpert (1995).

2. Combining Classi�ers

Suppose that we have M individual data-based classi�ers gn;1; � � � ; gn;M: Observe that

each gn;j; j = 1; � � � ;M is a map of the form:

gn;j : f<
d � f1; � � � ; Kggn � <d �! f1; � � � ; Kg:

The idea of combining gn;1; � � � ; gn;M is to �nd a new classi�er  n(gn;1; � � � ; gn;M) for which
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the misclassi�cation error errn( n) = Pf n(gn;1(X); � � � ; gn;M(X)) 6= Y j Tng is, in some

sense, smaller than that of each constituent classi�er. In a recent article Mojirsheibani

(1998a) proposed a discretization method for combining classi�ers. The resulting rule,

denoted by  comb1

n
, works as follows. Let gn;1; � � � ; gn;M be as before. Then

 
comb1

n
(gn;1(X); � � � ; gn;M(X) = argmax1�k�K

X
i: Yi=k

IfAn;M(X;Xi
)g; (1)

where

An;M(X;Xi
) = fgn;1(Xi) = gn;1(X); � � � ; gn;M(Xi) = gn;M(X)g;

and IfAn;M(X;Xi)g is the indicator function of the set An;M(X;Xi). The combined

classi�er (1) is motivated by the fact that when the individual classi�ers g1; � � � ; gM

are nonrandom (do not depend on the data), then (1) is simply a multinomial dis-

crimination rule based on the discretized \data": (W1; Y1); � � � ; (Wn; Yn), where Wi =

(g1(Xi); � � � ; gM(Xi)). Of course, in practice the individual classi�ers depend on the data

(and, as a result, Wi's are no longer iid). Observe that (1) may be viewed as a class-

majority vote where the voters are the individual observations falling in di�erent classes

and the vote associated withXi is either 0 or 1 according to whether the indicator function

Ifgn;1(Xi) = gn;1(X); � � � ; gn;M(Xi) = gn;M(X)g

is 0 or 1. Note that the combining procedure given by (1) is not smooth. It lacks smooth-

ness in the sense that the vote associated with eachXi is either 0 or 1 with no intermediate

values. Although the combined classi�er  comb1

n
has strong asymptotic optimality prop-

erties (see Mojirsheibani (1998a)), the lack of smoothness described above can distort
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its performance in the case of sparse data. To deal with the non-smoothness problem,

Mojirsheibani(1998b) proposed a 
exible class of kernel-based combined classi�ers, where

the optimal member of the class is empirically chosen by a data-splitting approach. The

steps may be summarized as follows. Start by randomly splitting the data into a training

sample of size n1, and a testing sequence of size n2; here n1 + n2 = n. Let gn1;1; � � � ; gn1;M

be M individual classi�er based, only, on the training set of size n1. For �x � > 0, let

Kh(x) be the exponential kernel:

Kh(x) = e
�(x=h)�

; h > 0

Also, let

 n1;h
(gn1;1(X); � � � ; gn1;M(X)) =

argmax1�k�K
X

fi: 1�i�n1; Yi=kg

Kh

0
@ MX
j=1

Ifg
n1;j

(Xi) 6= g
n1;j

(X)g

1
A
; if h > 0;

and

 n1;h
(gn1;1(X); � � � ; gn1;M(X)) =

argmax1�k�K
X

fi: 1�i�n1; Yi=kg

IfAn;M(X;Xi)g; if h = 0;

where IfAn;M(X;Xi)g appears in (1). Now, consider the class of combined classi�ers

	n1;h
= f n1;h j h � 0g:
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The proposed kernel-based combined classi�er  comb2

n
is the classi�er, selected from 	n1;h

,

that minimizes the error committed on the testing sequence, i.e.,  comb2

n
minimizes

cerrn( n1;h) = 1

n
2

n2X
i=1

If n1;h(Xn1+i) 6= Yn1+ig: (2)

Of course, in practice, choosing  comb2

n
from the class 	n1;h

amounts to a search over a

grid of values of h in order to �nd the one for which (2) is minimized. Note that the

subscript n on  
comb2

n
signi�es the fact that  comb2

n
depends on the entire sample of size

n = n1 + n2. How good are the combined rules  comb1

n
and  

comb2

n
as compared to the

individual classi�ers? It truns out that, under some regularity conditions, both of these

rules are asymptotically, (strongly) at least as good as the best individual classi�er, i.e.,

for each constituent classi�er gn;j, one has

lim sup
n!1

ferrn( 
`

n
)� errn(gn;j)g �a.s. 0; for ` = 1; 2:

Here

errn( 
`

n
) = Pf `

n
(gn;1(X); � � � ; gn;M(X))6= Y j Tng

and

errn(gn;j) = Pfgn;j(X) 6= Y j Tng:

For more on these results see Mojirsheibani (1998a,b).

In this article we propose two new procedures for combining classi�ers. To motivate

our �rst method, recall that we may think of (1) as a class-majority vote where the vote
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associated with Xi is 1 if

Ifgn;1(Xi) = gn;1(X); � � � ; gn;M(Xi) = gn;M(X)g = 1;

or equivalently if

If
MX
j=1

Ifgn;j(Xi) = gn;j(X)g =Mg = 1: (3)

This condition is perhaps too restrictive since all the M classi�ers are required to classify

both Xi and X as belonging to the same class. Thus, quite often, the vote associate with

Xi may turn out to be zero because gn;j(Xi) 6= gn;j(X) for only one or two individual clas-

si�ers; this can reduce the e�ectiveness of the combined classi�er  comb1

n
in small samples.

Our �rst (new) combined classi�er of this article, which may be viewed as an improved

version of  comb1

n
, is denoted by  comb3

n
and works as follows: Let LM be a positive integer

satisfying LM �M , then

 
comb3

n
(gn;1(X); � � � ; gn;M(X)) =

argmax1�k�K
P

i: Yi=k
If
P

M

j=1 Ifgn;j(Xi) = gn;j(X)g � LMg:

In other words,  comb3

n
replaces (3) by a more 
exible criterion: Xi favors a vote of 1 if

If
MX
j=1

Ifgn;j(Xi) = gn;j(X)g � LMg = 1:

Here LM may be viewed as the tuning parameter of the combined classi�er  comb3

n
. Note

that when LM = M , then  comb3

n
is the same as  comb1

n
. Before studying the e�ectiveness

of  comb3

n
, we describe the mechanics of our second combining method.

Our second proposed combining procedure of this article is based on the following
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framework. Put

 k(gn;1(X); � � � ; gn;M(X)) =
MX
j=1

Wjk Ifgn;j(X) = kg;

for suitable weights Wjk's, and consider the combined classi�er that works by classifying

X as belonging to, say, class k0 2 f1; � � � ; Kg if

k
0 = argmax1�k�K  k(gn;1(X); � � � ; gn;M(X)):

The question is how to choose the weights Wjk's. One sensible criterion is: Wjk should

be small if the j-th individual classi�er is poor. A natural choice would then be

Wjk = P (gn;j(X) = k j Y = k);

that is, the conditional probability that gn;j classi�es X correctly, given Y = k. This

suggests replacing Wjk with the estimates:

c
Wjk =

P
n

i=1 Ifgn;j(Xi) = k; Yi = kgP
n

i=1 IfYi = kg

Thus we have the combined classi�er  comb4

n
:

 
comb4

n
(gn;1(X); � � � ; gn;M(X)) = argmax1�k�K

MX
j=1

c
WjkIfgn;j(X) = kg:

3. Examples

The following examples provide an empirical comparison of the combining procedures

discussed in this article. These examples also show some advantages of working with

combined classi�ers as compared to the individual ones.
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Example 1. This example deals with K=3 classes with �ve predictors: Two multivariate

normals with mean vector (1, 1, 1, 1, 1) and (2, 1, 1, 1, 1), and the identity covariance

matrices; the third class is a multivariate Cauchy distribution with independent compo-

nents having location and scale parameters (1,1), (2,1), (1,1), (1,1), (1,1). It should be

emphasized that we have deliberately selected 3 classes which are quite diÆcult to sep-

arate (regrdless of the type of the individual classi�er used) and that one should expect

large misclassi�cation error rates. The training sample consists of 70 observations from

each of the three classes, thus the entire data size is n = 3 � 70 = 210. We consider

combining M=5 classi�ers: Two tree classi�ers with 6 and 12 terminal nodes, a 5-NN

classi�er (short for 5-Nearest Neighbor), a 40-NN classi�er, and the LDA (short for lin-

ear discriminant analysis). An additional 100 observations from each class was used to

estimate the misclassi�cation error rates of di�erent classi�ers. The results appearing in

row A of Table 1 are the averages over 20 such Monte Carlo runs. The numbers shown in

brackets are the standard errors. Here (and in the subsequent examples) we have used the

combined classi�ers  comb1

n
,  comb2

n
,  comb3

n
with LM=3 and 4, and  comb4

n
; these are referred

to as comb1, comb2, comb33, comb34, and comb4 respectively in Table 1. Row A of Table

1 shows that  comb1

n
is nearly as good as the best individual classi�er, the 5-NN rule in this

case. However, the ability of the combining procedure to outperform the individual clas-

si�ers is even more apparent in the case of  comb2

n
and  comb3

n
; these appear in columns 3, 4,

and 5 of Table 1. A side-by-side boxplot of the error rates is given in Figure 1(a). Next,

the entire process was repeated for training samples of sizes 200 and 400 from each class.
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The corresponding results are shown in rows B and C of Table 1, and the side-by-side

boxplots are in Figure 1(b), (c).

Table 1: Error rates for Example 1

comb1 comb2 comb33 comb34 comb4 tree6 tree12 5-NN 40-NN LDA

A .430 .421 .424 .418 .436 .456 .451 .426 .509 .504

(.033) (.041) (.024) (.030) (.033) (.032) (.031) (.026) (.024) (.051)

B .393 .377 .381 .367 .397 .445 .405 .389 .429 .507

(.024) (.026) (.022) (.025) (.026) (.029) (.031) (.028) (.027) (.044)

C .375 .354 .370 .351 .378 .417 .377 .389 .373 .532

(.022) (.025) (.033) (.031) (.029) (.018) (.030) (.017) (.033) (.060)

Note that, except for the LDA classi�ers, all individual and the combined classi�ers

tend to perform better for large sample sizes. The LDA is clearly not suitable due to the

presence of the Cauchy class. Observe that the combined classi�ers comb2 and comb34

have consistently performed quite well, regardless of the training sample size.
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Figure 1: Side-by-side boxplots of the error rates for Example 1
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Example 2. In this example we consider combining a number of relatively useless clas-

si�ers. These are a 150-NN classi�er, a 200-NN classi�er, a tree classi�er with just 2

terminal nodes, the LDA and a new classi�er C(�), de�ned by

C(x) =

8>>>>>>>><
>>>>>>>>:

1 if k x k2< 10;

2 if k x k2� 30;

3 if 10 �k x k2< 30:

There are k=3 classes. The �rst class is a multivariate normal with the mean vector (1,

1, 1, 1, 1) and the diagonal covariance matrix diagf0:5; 0:5; 0:5; 0:5; 0:5g; the other two

classes are the same as classes 2 and 3 of Example 1. Once again, we have considered

three di�erent sample sizes: A) 70 from each class, B) 200 from each class, and C) 400

from each class. Observe that both the 150-NN and the 200-NN rules are poor classi�ers,

(recall that a kn-NN rule is consistent when kn=n ! 0, as n ! 1). Also, note that the

new rule C(x) is a wrong classi�er because it confuses classes 2 and 3. A tree classi�er

with just 2 terminal nodes is not appropriate for separating three classes. Finally, the

LDA is clearly not suitable for separating normal populations (with di�erent covariance

matrices) and a Cauchy population. The results are summarized in rows A, B, and C of

Table 2; these correspond to di�erent training sample sizes. Side-by-side boxplots are in

Figure 2. Table 2 shows that combining a number of incorrect or useless classi�ers can

still yield substantial improvement over the individual classi�ers; this is particularly true

in the case of comb1, comb2, and comb34. The combined classi�er comb4 fails to produce

any good results no matter how large the sample size is.
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Figure 2: Side-by-side boxplots of the error rates for Example 2
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Table 2: Error rates for Example 2

comb1 comb2 comb33 comb34 comb4 tree2 C(x) 150-NN 200-NN LDA

A .331 .331 .496 .370 .645 .531 .634 .621 .657 .464

(.021) (.033) (.032) (.036) (.027) (.045) (.019) (.024) (.011) (.070)

B .329 .318 .444 .392 .556 .531 .631 .531 .556 .498

(.027) (.029) (.036) (.038) (.027) (.019) (.021) (.021) (.019) (.061)

C .341 .320 .399 .345 .509 .501 .651 .428 .470 .438

(.015) (.023) (.015) (.016) (.015) (.032) (.032) (.010) (.030) (.015)

Example 3. In this example we consider using a combined classi�er as an implicit model

selection method. The idea may be summarized as follows. Quite often the classi�er

of interest depends on a tuning parameter t, whose value has to be selected from a

set of candidate values t1; � � � ; tp. Examples of such classi�ers are tree classi�ers with

t= number of terminal nodes; generalized linear discriminant rules, where t= number

of �xed functions; and Nearest Neighbor classi�ers with t= number of nearest neighbors.

Therefore, by combining all p individual classi�ers, one should expect to implicitly recover

the one with the smallest error rate. In this example we propose to combine M=5 tree

classi�ers, where t (the number of terminal nodes) takes the values 3, 6, 9, 12, 15. The

classes are those of Example 1. The results are shown in Table 3, and the boxplots are
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in Figure 3. Table 3 shows that for larger training sample sizes (rows B and C) both

comb1 and comb2 perform quite well. The rule comb2 is clearly the winner for all three

Table 3: Error rates for Example 3

comb1 comb2 comb33 comb34 comb4 tree3 tree6 tree9 tree12 tree15

A .444 .421 .433 .439 .434 .508 .448 .436 .438 .451

(.044) (.041) (.038) (.042) (.036) (.026) (.028) (.037) (.042) (.044)

B .382 .358 .385 .380 .385 .476 .406 .385 .381 .382

(.024) (.024) (.028) (.027) (.028) (.045) (.030) (.029) (.030) (.024)

C .359 .334 .391 .372 .393 .468 .419 .393 .372 .359

(.025) (.025) (.021) (.026) (.024) (.044) (.025) (.016) (.026) (.025)

sample sizes. In fact comb2 outperforms all the other combined and individual classi�ers.

The combined classi�er comb34 has also performed well in rows A and B of Table 3, but

not row C. It is important to mention that although using comb1 or comb2 or comb34

can produce error rates at least as good as the best individual, the resulting combined

classi�er does not retain the interpretability property enjoyed by the individual classi�ers;

this is one of the trade-o�s associated with combined classi�ers.
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Figure 3: Side-by-side boxplots of the error rates for Example 3
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3. Conclusion

In this article we have considered a number of procedure for combining di�erent clas-

si�ers in order to construct more e�ective classi�cation rules with lower misclassi�cation

error rates. The combined rules  comb1

n
and  

comb2

n
have the ability to outperform the

individual classi�ers under certain regularity conditions; these results are established in

Mojirsheibani(1998a,b). Examples 1, 2, and 3 show that  comb3

n
performs well in cases

where LM=4. This is no 
uke! In fact we are currently preparing a manuscript that deals

with the asymptotic performance of  comb3

n
for carefully chosen values of LM. Because of

its linear structure, the combined classi�er  comb4

n
is intuitively appealing. This classi�er

is a modi�ed version of the one that appeared in Breiman's (1997) article on Arcing Algo-

rithms. Unfortunately we have not been able to establish any optimality results for this

combining procedure. Also, most of our examples show that  comb4

n
is not as e�ective as

 
comb2

n
or  comb3

n

We would also like to point out that in all of our examples we have deliberately

selected three populations/classes which are very diÆcult to separate. As a result, the

misclassi�cation error rates are all quite high; this is also true for the combined classi�ers.

The message of the aricle, however, is that a combined classi�er such as  comb34

n
(or  comb2

n

or  comb1

n
) can be at least as good as the best individual classi�er.
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