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1. Introduction

We start with quotations from the Press Release: The Bank of Sweden Prize in Economic Sci-

ences in Memory of Alfred Nobel,1997 http: //www.nobel .se/announcement-97/economy97 .html

The Royal Swedish Academy of Sciences has decided to award the Bank of Sweden Prize in
Economic Sciences in Memory of Alfred Nobel, 1997, to Professor Robert C. Merton,
Harvard University, Cambridge, USA and Professor Myyron S. Scholes, Stanford University,
Stanford, USA for a new method to determine the value of derivatives. Robert C. Merton and
Myron S. Scholes have, in collaboration with the late Fischer Black, developed a pioneering
formula for the valuation of stock options. Their methodology has paved the way for economic
valuations in many areas. It has also generated new types of financial instruments and facilitated
more efficient risk management in society.

In a modern market economy it is essential that firms and households are able to select an appro-
priate level of risk in their transactions. This takes place on financial markets which redistribute
risks towards those agents who are willing and able to assume them. Markets for options and
other so-called derivatives are important in the sense that agents who anticipate future revenues
or payments can ensure a profit above a certain level or insure themselves against a loss above a
certain level. (Due to their design, options allow for hedging against one-sided risk — options give
the right, but not the obligation to buy or sell a certain security in the future at a prespecified
price.) A prerequisite for efficient management of risk, however, is that such instruments are
correctly valued, or priced. A new method to determine the value of derivatives stands out among
the foremost contributions to economic sciences over the last 25 years.

This year’s laureates, Robert Merton and Myron Scholes, developed this method in close
collaboration with Fischer Black, who died in his mid-fifties in 1995. These three scholars
worked on the same problem: option valuation. In 1973, Black and Scholes published what has
come to be known as the Black-Scholes formula. Thousands of traders and investors now use
this formula every day to value stock options in markets throughout the world. Robert Merton
devised another method to derive the formula that turned out to have very wide applicability;
he also generalized the formula in many directions.

Black, Merton and Scholes thus laid the foundation for the rapid growth of markets for derivatives
in the last ten years. Their method has more general applicability, however, and has created new
areas of research - inside as well as outside of financial economics. A similar method may be used
to value insurance contracts and guarantees, or the flexibility of physical investment projects.

The Problem

Attempts to value derivatives have a long history. As far back as 1900, the French mathematician
Louis Bachelier reported one of the earliest attempts in his doctoral dissertation, although the
formula he derived was flawed in several ways. Subsequent researchers handled the movement
of stock prices and interest rates more successfully. But all of these attempts suffered from the
same fundamental shortcoming: risk premia were not dealt with in a correct way.



The method

Black, Merton and Scholes made a vital contribution by showing that it is in fact not necessary
to use any risk premium when valuing an option. This does not mean that the risk premium
disappears; instead it is already included in the stock price.

One can use this argument, along with some technical assumptions, to write down a partial differ-
ential equation. The solution to this equation is precisely the Black-Scholes’ formula. Valuation
of other derivative securities proceeds along similar lines.

The Black-Scholes formula

Black and Scholes’ formula for a European call option can be written as
C = SN(d) — Le™""N(d — /1)
where the variable d is defined by
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According to this formula, the value of the call option C, is given by the difference between the
expected share value — the first term on the right-hand side — and the expected cost — the second
term — if the option right is exercised at maturity. The formula says that the option value is
higher the higher the share price today S, the higher the volatility of the share price (measured
by its standard deviation) sigma, the higher the risk-free interest rate r, the longer the time to
maturity ¢, the lower the strike price L, and the higher the probability that the option will be
exercised (the probability is evaluated by the normal distribution function N).

Further Reading

Additional background material on the Bank of Sweden Prize in Economics Sciences in Memory
of Alfred Nobel 1997, The Royal Swedish Academy of Sciences:
http://www.kva.se/ecoback97.html

Black, F. and M. Scholes, 1973, “The Pricing of Options and Corporate Liabilities”, Journal of
Political Economy, Vol. 81, pp.637-654.

Black, F., 1989, “How We came Up with the Option Formula”, The Journal of Portfolio Man-
agement, Vol. 15, pp.4-8.

Hull, J.C., 1997, Options, Futures and Other Derivates, 3rd edition, Prentice Hall

Merton, R.C., 1973, “Theory of Rational Option Pricing”, Bell Journal of Fconomics and Man-
agement Science, Vol. 4, pp.637-654.
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We hope to be able to elucidate on the Black-Scholes formula in Sections 4 and 5. Without casting
a shadow on the significance and importance of the matter of achievement in hand that has also
inspired this exposition, we note in passing that, in this announcement of The Royal Swedish Academy
of Sciences, Louis Bachelier’s “attempts” get quite a short shift indeed, to say the least. In order to
put things to rights right at the outset, we quote here the Preface of Daniel W. Stroock to his Notes
of April 1996, that deal with the same matter soundly, as well as in a correct historical context, just
about a year or so before the announcement of this 1997 Nobel Prize in Economic Sciences. Stroock’s

introductory lines to his notes read as follows:

“Ito’s formula is now the bread and butter of the “quant” department of several major financial
institutions. Actually, the application of what we now call Brownian motion to finance antedates
its application to Brownian motion and goes back to the thesis, written at the turn of the cen-
tury (five years before Einstein’s famous paper about the kinetic theory of gases) by L. Bachelier.
Bachelier was trying to model the fluctuations for prices on the Bourse. From a purely mathe-
matical standpoint, his insights are far more penetrating than anyone else’s prior to Wiener. In
addition, their practical impact on all our lives is also far more penetrating. In fact, models, like
that of Black and Scholes, which are the form in which Bachelier’s ideas have been reincarnated,
constitute the basis on which modern business makes decisions about how everything from stocks
and bonds to pork belly futures should be priced. The role that 1to’s formula plays in all this
is very much the same as the one which it plays in our considerations. Namely, [t0’s formula
provides the link between various stochastic quantities and differential equations of which those
quantities are the solution.”

The present exposition is aimed at a wide audience in mathematics, and in the mathematical
and economic sciences. Taking a historical route and, unfortunately, many more short cuts as well
than one really should, we hope to succeed in at least illustrating what it took in more than the first
half of the twentieth century, to create the mathematical foundations of the theory of probability and
stochastic processes that has eventually also led to the possibility of modelling stock prices correctly. By
writing correctly here, we only mean to say mathematically correctly. The question of a mathematically
correctly posed model possibly being also correct from the point of view of the theory and practice of
economic sciences is necessarily a different one of course. In this essay we will not deal with studying

this problem.

We first consider a bank account or bond that is risk free in the sense that it yields r percents.
More formally, let {3(t), 0 < ¢ < T} be the price of a risk free bond that yields at a constant interest

rate r up to its time of maturity 1. Then we have

Bt + At) — B(t) = rB(t) At
and, when compounded continuously,

(1.1) dB(t) = rpt)dt, 0<t<T.



At time ¢ € [0, T

(1.2) Aty = B(0)e™, ie, B(0)=e"TH(T),
and, hence, we conclude

(1.3) Bty =e"TDRT), 0<t<T.

Now this present value B(t) of a fixed rate risk free bond, that is the reduction of its value at
maturity S(T) at an appropriate scale, can be viewed as the rational (fair) price of B(T) at time
t € [0,T] when the time left to its maturity is 7" — t.

In the Black and Scholes (1973) and Merton (1973) model (cf. Remark 4.1) the risky price of a
stock {S(t), 0 <t < T} is “governed randomly” by a Brownian motion {W(t), 0 <t < oo} via the

Ito process:
(1.4) dS(t) =rS(t)dt + oS(t)dW(t), 0<t<T,
i.e., by the stochastic process
t t
(1.5) S(t) = S(0) +/ rS(s)ds +/ oS(s)dW(s), 0<t<T.
0 0

with positive constant coefficients r and o.

On assuming some ideal market conditions, the aim of the game in a nutshell, in general, is to
obtain a rational (fair) price formula for various options to buy or sell a certain security in the future
at a prescribed price. As we will see (cf. (4.23), (4.25), (4.32), (4.33), (4.35) and (4.36)), under ideal
market conditions, these formulae for various options are of the same general form that can, essentially,
be viewed as “on an average imitations”, under uncertainty, of the present value formula (1.3) of a

fixed rate risk free bond.

Before we can however proceed any further, we first have to, and will attempt to, explain somewhat,
what W (-) and (1.4), (1.5) are “all about”. We hope to succeed in outlining some of the developments

in mathematics that were initiated by
L. Bachelier (1900), Théorie de la spéculation, Ann. Sci. Ecole Norm. Sup. 17, 21-86,

the first big step in this regard. Indeed, Bachelier’s models are based on random walks and their
limiting cases, i.e., Brownian motions in contemporary language. The next 50 or so years produced
some of the most impressive and strikingly NEW mathematics of the twentieth century that in the

second half has acquired gigantic proportions and has gained immense importance as well.
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Naturally, the literature on these developments is immense. The short “summaries” of our Sections
2 and 3, on Brownian motion and Ito calculus respectively, are not meant to be short introductions
to, or reviews of, these huge areas of mathematics. The historical skeletal glimpse of these twentieth
century branches of mathematics that we hope to give here is, at best, only an indicator of the vast

background that precedes the “art” of financial modeling.

2. Brownian motion — Wiener process

Bachelier (1900), Einstein (1905) and Smoluchowski (1906) provided a theory of the peculiar
erratic motion of small particles suspended in a liquid, first described in 1826 by the Scottish botanist
Brown. In a series of papers beginning in 1920, Wiener undertook a mathematical analysis of
Brownian motion. In his 1956 autobiography (pp. 38,39) Wiener writes:

“The Brownian motion was nothing new as an object of study by physicists. There were
fundamental papers by Einstein and Smoluchowski that covered it, but whereas these papers
concerned what was happening to any given particle at a specific time, or the long-time statistics

of many particles, they did not concern themselves with the mathematical properties of the curve
followed by a single particle.

Here the literature was very scant, but it did include a telling comment by the French
physicist Perrin in his book Les Atomes where he said in effect that the very irregular curves
followed by particles in the Brownian motion led one to think of the supposed continuous non-
differentiable curves of the mathematicians. He called the motion continuous because the particles
never jump over a gap and non-differentiable because at no time do they seem to have a well-
defined direction of movement.”

Before continuing along these lines, we review briefly bits of the Bachelier (1900)—Einstein (1905)—
Smoluchowski (1906) fundamental background. We begin with quoting from
Prize Presentation—Physics 1921
hhtp://www.nobel .se/laureates/physics-1921-press.html

Albert Einstein 1921 Nobel Laureate in Physics for his services to Theoretical Physics, and
especially for his discovery of the law of the photoelectric effect.

Nobel Prize in Physics 1921. Presentation Speech by Professor S. Arrhenius, Chairman of the
Nobel Commiitee for Physics of the Royal Swedish Academy of Sciences.

Your Majesty, Your Royal Highnesses, Ladies and Gentlemen.

There is probably no physicist living today whose name has become so widely known as that of
Albert Einstein. Most discussion centres on his theory of relativity. This pertains essentially to
epistemology and has therefore been the subject of lively debate in philosophical circles. It will
be no secret that the famous philospher Bergson in Paris has challenged this theory, while other
philosophers have acclaimed it wholeheartedly. The theory in question also has astrophysical
implications which are being rigorously examined at the present time.

Throughout the first decade of this century the so-called Brownian movement stimulated the
keenest interest. In 1905 Einstein founded a kinetic theory to account for this movement by
means of which he derived the chief properties of suspensions, i.e. liquids with solid particles
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suspended in them. This theory, based on classical mechanics, helps to explain the behaviour
of what are known as colloidal solutions, a behaviour which has been studied by Svedberg,
Perrin, Zsigmondy and countless other scientists within the context of what has grown into a
large branch of science, colloid chemistry.

A third group of studies, for which in particular Einstein has received the Nobel Prize, falls
within the domain of the quantum theory founded by Planck in 1900.

An associated phenomenon is photo-luminescence, i.e. phosphorescence and fluorescence.

Einstein’s law of the photo-electrical effect has been extremely rigorously tested by the American
Millikan and his pupils and passed the test brilliantly. Owing to these studies by Einstein the
quantum theory has been perfected to a high degree and an extensive literature grew up in this
field whereby the extraordinary value of this theory was proved. Einstein’s law has become the
basis of quantitative photo-chemistry in the same way as Faraday’s law is the basis of electro-
chemistry.*

* Being too remote from Sweden, Professor Einstein could not attend the ceremony.
The landmark 1905 paper of Einstein this Presentation Speech singles out is

A. Einstein (1905), On the movement of small particles suspended in a stationary liquid demanded by
the molecular—kinetic theory of heat. Ann. Physik 17, 549-560.

Let {W(t) = W(t,w); 0 <t < oo} denote the Brownian motion of a particle w as time ¢ goes
by. Then W (t,w) represents the position of that particle at time ¢. The essential point in Einstein’s
1905 modelling of W (%) is that the contacts between the foreign microscopic particles and the particles
of the liquid occur only at moments of collision. These collisions occur irregularly but often. Thus,
if £ > s and the difference { — s is large in comparison with the time interval between two successive
collisions, then W(t) — W (s) is the sum of a large number of small increments. Now, if the liquid is
in macroscopic equilibrium, we may assume that the increments depend only on the length of their
time interval and hence are homogeneous, and also that in disjoint time intervals they are independent.
Assuming that Brownian motion has a probability density for the displacement of a particle within
any fixed time interval and that this motion of a particle is symmetric, then the average increment
over t — s is E(W(t) — W(s)) = 0. Assume also that the average squared increment over (t — ) is
proportional to the length of this time interval, i.e., E(W(t) — W(s))? = c(t — s) < oo, and that
EW(t)—W(s)]®> =o((t —s)) as (t —s) — 0.

Under these assumptions Einstein obtained the diffusion equation (2.2) and its fundamental solu-
tion (2.1) for the displacement of a Brownian particle. Namely, he derived the transition density for
Brownian motion from the molecular theory of heat by concluding that

(2.1) p(tyz,y) = dinI (W(t) € dy) = the probability density function of a Brownian



particle that starts from x and goes “into” y after a lapse of time ¢ > 0
1 2
- —(y—x)*/(2ct)
= e , >0, z,y € R,
V2mcet Y

for each x, is the fundamental solution of the classical “heat” or “diffusion” partial differential equation

op 1 &%
2.2 I A
(2.2) ot~ 2 o2
i.e., right hand side expression of (2.1) is a solution of (2.2) for ¢ > 0, and as ¢t — 0, the measures
defined by using p(t;x,-) as a density (with respect to Lebesgue measure) converge weakly to a unit

mass at x.

Moreover, Einstein also established a relation between ¢, some measurable (observable) parameters
that are characteristic of a given system, and Avogadro’s number N, the number of molecules in a mole
(N = 6.0248 x 10*® mole™!; mole := that quantity of substance whose mass (in grams) is numerically
equal to the molecular weight of the substance), which in turn led to an accurate method of measuring

the latter by observing particles undergoing Brownian motion.

Indeed, starting from x at t = 0, the mean-square displacement for being at y € R at time ¢ is

given by the formula

(2:3) E(W(t) - o) = / S

—(y=2)%/(2ct) g, — ot
e ct.
N vV 2met Y

Thus, according to Einstein’s theory, if one observes a large number of free (no outside force, such as
e.g. gravity) Brownian particles during the same time interval ¢ and equates the empirically calculated
mean-square deviation with the theoretically predicted value ct, with ¢ = 4kT/f (where T is the
absolute temperature, f is the friction coefficient of the substance in hand (e.g., for spherical colloidal
particles of radius r in a gas or liquid, f is given by Stokes’ formula f = 6xnr N, where 1 is the viscosity
coefficient), and k is the Boltzmann constant), then one can get an estimate of ¢ and hence determine
empirically the Avogadro number N. This, in turn, leads to settling the Avogadro hypothesis that
equal volumes of gases under the same conditions of pressure and temperature contain the same number
of molecules. This fundamental achievement may very well be the most successful application ever, of
the so-called method of moments of the statisticians. We quote from M. Kac (1966, p. 54):

“The successful determination of the Avogadro number from Brownian experiments was one
of the great triumphs of Physics in the early days of the century and it dealt the final blow to
the opponents of atomistic theories.”

While Einstein could have of course received a Nobel Prize for several of his many singular achieve-
ments, we note in passing that, clearly, his fundamental 1905 work on Brownian motion had consequen-
tially led to his 1921 Nobel Price. YET when Statistical Quantum Mechanics (Niels Bohr, 1922
Nobel Prize) and, as a consequence, the so—called Uncertainty Principle (Heisenberg, Schrodinger)

entered the scene, Einstein countered by saying: “God does not roll dice”.
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With all due respect, one cannot but humbly add here that, though God was not rolling dice when
“helping” to estimate the Avogadro number from Brownian experiments, He/She was certainly busy
tossing a “fair” coin on that occasion. Indeed, one of the simplest models for Brownian motion that
was already insightfully realized by Bachelier (1900) can be given in terms of the simple symmetric

random walk model along the following lines.

Suppose that a particle is moving on the real line, starting from the origin. In each time unit it can
only move one step to the right, or to the left, with probability one half and these steps are assumed
to be independent. Say the i*" step of the particle is X;. Then X1, Xo,... are independent identically

distributed random variables with
(2.4) PX;i=1)=PX;=-1)==, i=1,2,...,

and after n steps the particle will be located at S,, = X1+ X2+ X,. Refinements of the thus created
path Si,S5,... imitate Brownian motion quite well if the time units and steps become progressively
shorter (cf., e.g., P. Révész, 1990, Section 6.2).

Further to Bachelier’s work, it is of interest to note also that he was first to establish the law of

maximum displacement for Brownian motion, namely that we have

(2.5) sup W(s) 2 |W(t)| for each fixed t > 0,
0<s<t

i.e.,

2.6 R Wiy <yt o ML 0

(2.6) 0{0531}9275 (5)_?J} OW% y=zU

Physically speaking, in general, we can consider as Brownian motion the movement of any body
which is subject to collision with other bodies, provided the dimension of the given body is small in
comparison with the dimensions of the other bodies and if the contacts occur only at moments of

collision and these collisions are of a random character.

In general, let EW (t) = put(—oo < 1 < +o00) and E(W(t) — ut)? = o2t. As far as mathematical
considerations go, we may assume without loss of generality that 0> = 1 and pr = 0. Such a Brownian
motion is called normalized (standard) Brownian motion, and this is the one this section is concerned
with from now on. We note that (W(t) — ut)/ov/t is a normalized Brownian motion if W (t) is a
Brownian motion with mean EW (t) = ut and variance E(W (t) — ut)* = o?t. We continue using the

notation W (-) for a standard Brownian motion as well.

In a series of papers beginning in 1920 (cf. References) Wiener undertook a mathematical analysis

of Brownian motion.



A stochastic process {W(t) = W(t,w);0 <t < oo}, — where w € Q, and (9, A, P) is a probability

space —, is called a standard Wiener process if

(a) Plw: W(t,w) - W(s,w) <z)= —ut/2(t=9) gy,

W= I

for all 0 < s <t < 400 and W(0) = 0, i.e., the random variable W (t,w) — W(s,w) is normally
distributed with mean 0 and variance t — s, and we start W(t) at ¢t = 0 with probability one, and with
wW(0)=0,

(b) W(t) is an independent increment process, i.e., W(ta) — W(ty), W(ts) — W(ts),...,W(ta) —

W (ta;—1) are independent random variables for all
0<ty <to <tz <ty < v <Hogy1 <oy <00 (211,2,),
i.e., by (a) and the notion of independence of events,

P( ﬁ{w LW (bai, w) — W (tai1,w) < :c@-})

_“2/2(t2i_t2ifl)du, for any integer n

n 1 z;
:H / €
i—1 \/271'(152@' — tQi—l) —o0

(c) The sample path function W(t,w) (i.e., W(t,w) as a function of ¢ for w fixed) is everywhere
continuous in t with probability one (i.e., except on an w-set of P-measure zero W (t,w) is an

everywhere continuous function of ¢).

We note in passing that (a) and (b) imply EW (s)W () = s At for all s,t € [0, 00), and, conversely,

W (-) is completely specified by its Gaussian finite dimensional distributions and its covariance structure.

Based on Bachelier (1900), Einstein (1905), Smoluchowski (1906, 1915, 1916), it was accepted
that Brownian paths were governed by probabilistic laws as postulated in (a) and (b) above, and, ever
since Bachelier, it was also believed that these paths were continuous. The problem of constructing a
rigorous mathematical model that guarantees the existence of Brownian motion as in (a), (b) and (¢),

remained open.

Wiener (1920, 1923) provided the first existence proof via constructing a mathematical model of
Brownian motion in which, based on the Daniell integral, probabilities were the values of a measure on

subsets of a space of continuous functions, commonly called Wiener measure since.

Wiener’s work in this regard constitutes a first time measure theory on a space of functions, more than

a decade before Kolmogorov’s fundamental work,

Kolmogorov, A.N. Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer, Berlin, 1933

9



and hence, naturally, without the help of Kolmogorov’s extension theorem and that of Doob’s approach

thirty or so years after,
Doob, J.L., Stochastic Processes, Wiley, New York, 1953.

For a short sketch of these measure theoretic considerations ¢ la Kolmogorov (1933) combined
with Doob (1953) wis—a vis the definition of a standard Wiener process, as well as for that of Wiener’s
Daniell integral based approach, we refer to M. Csorgé (1979, pp. 263-265). For more details in both
directions, we refer to Doob (1966) and Kac (1966).

Wiener presented his fundamental results and ideas on Brownian motion in a series of papers
published in the period from 1920 to 1923. In addition to the ones in 1920 and 1923 already mentioned
here as well, Doob (1966) singles out Wiener (1921), where Wiener applied his measure to obtain a
second model for Brownian motion that is essentially the model that was rediscovered by Uhlenbeck
and Ornstein (1930). An account of his theories is included in Wiener (1930), as well as in a chapter
of his 1934 book with Paley.

Moreover, in Paley and Wiener (1934) W (t,w) is defined as a function on the unit interval with
Lebesgue measure so that properties (a), (b), and (c) hold, i.e., a Wiener process on C|0,1]. This
famous construction does not involve the Daniell integral, and W (¢,w) is represented explicitly as the
sum of a Fourier series with random coefficients so that W(-,w) is a continuous function for almost all
w. Wiener’s construction of Wiener measure via the Daniell integral is also restricted first to [0, 1],
but the simple transformation

t t
* M g N - <
W*(tw) = (1+1¢) <W<t+1,w> —t+1W(1,w)>, 0<t<oo,

yields W*(t;w) to be a Wiener process on C|0,00) in both cases.

Having constructed his completely additive probability measure on C'0,00), in his papers from
1920 to 1923, and also in his joint book with Paley in 1934, Wiener also studied the regularity of
Brownian paths, finding estimates of the moduli of continuity for the path functions and proving that
almost all W(-,w) are nowhere differentiable, and, even more strongly, that for every £ > 0 almost all

W (-, w) satisfy the Lipschitz condition with exponent 1/2 — ¢, but almost none with exponent 1/2 + ¢.

P. Lévy (1937, 1939, 1940, 1948, 1950/51) had made fundamental lasting contributions to con-
structing and describing the fine analytic behaviour of Brownian path functions, such as their modulus
of continuity, local time, equivalence of local time, mesure du voisinage, for example. Here we mention
only P. Lévy’s modulus of continuity that reads as follows: Almost all path functions W (-, w) are such
that

sup  sup |W(t+s)—W(t)] sup |W(t+h) —W(t)|
(2.7) iy OSES1=h0<s<h T _q
' h10 (2hlog(1/h))1/2 h10 (2hlog(1/h))1/? .
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In M. Csorgs—P. Révész (1981) we construct a standard Wiener process {W(t,w); 0 <t < oo} so
that one has: For any £ > 0 there exists a constant C' = C'(¢) such that

(2.8) P{ sup  sup |[W(t+s)—W(t)| > Uhl/Q} < %e—vg/(2+e)

0<t<1—h0<s<h
for all v > 0 and 0 < h < 1, and, using this inequality, we also prove (2.7)

As to how much non-differentiable are the paths of standard Brownian motion, we have (cf.
M. Csorg6—P. Révész, 1979b, 1981) the following modulus of non-differentiability:  Almost all path

functions W (-, w) are such that

o 8log(1/h)\"/? B
(2.9) l}}?&oggg_h ozggh <W (Wi(t+s)—W(t)|=1.
This, in turn, implies of course that almost all path functions of W(-,w) are nowhere differentiable

and characterizes also the Lipschitz nature of these paths as well.

The absence of differentiability of Brownian path is coupled with the lack of times of increase or
decrease of the paths. The latter is perhaps one of the most intriguing aspects of Brownian sample
path behaviour. We call ¢ > 0 a time of increase (respectively decrease) of a function f(t) if for some
e>0, f(tFh) < f(t) < f(t£h), 0<h <e, respectively.

Dvoretzky, Erdés and Kakutani (1960/61) proved that, with probability 1, W (t,w) has no times of

increase or decrease.

The original proof of this fascinating theorem is demanding, to say the least. Based on P. Lévy’s
concept of Brownian local time, Knight (1981, p. 150) gives an elegant short proof of this subtle result.
Moreover, he shows also that, if (d/dt)W (to) is assumed to exist, then it is no loss of generality to
assume also that (d/dt)W(to) = ¢ > 0. But then {; is a time of increase, contradicting the just
mentioned Dvoretzky-Erdés-Kakutani theorem. Thus we conclude again that W (-, w) is almost surely

nowhere differentiable.

Proving non-differentiability this way (cf. also Geman and Horowitz, 1980) is a mathematical
reincarnation of Perrin calling the motion of Brownian particles non-differentiable because at no time
do they seem to have a well-defined direction of movement. So, indeed, Perrin was right about Brownian
motion and mathematics gained a beauty, the continuous nowhere differentiable Wiener process, that
has ever since been one of the most profound driving forces in our twentieth century mathematics that

is also combined with an immense practical impact on all our lives.

One more strikingly beautiful property of Brownian motion before turning our attention to sketch-
ing some of the elements of stochastic calculus. We have the so-called Skorohod (1961) embedding

scheme in mind, which essentially states that, knowing its past up to a given time, Brownian motion

1



can stop and pretend to be the random variable associated with any distribution on the real line IR that
has at least two moments. A bit more precisely, for any distribution function F' on R with first moment
zero and finite second moment, one can define a probability space (£2,.4, P) with a standard Wiener
process W(-,w) and a finite stopping time 7 > 0 with finite expectation such that the distribution
function of the random variable W(7) is the given F. By saying that 7 > 0 is a stopping time, one
means that the event {w : 7(w) < t} is an element of the o—algebra generated by {W(s,w), s < t}.

Thus, the simplest form of Skorohod’s embedding theorem reads as follows.

Skorohod (1961): Let X : Q — R be an arbitrary random variable with distribution function F,
EX = [padF(z) = 0, EX? = [,2?dF(z) = 1. There exists a probability space (Q, A, P) with a
Wiener process {W(t); 0 <t < oo} and a finite stopping time random variable 7 > 0 such that

XQW(T) and FET=1.

The proof of this theorem hinges on the strong Markovian property of W(-,w) (cf. K. Tto and
H.P. McKean, Jr., 1974 and references therein): Suppose 7 is an almost surely finite stopping time.
Then W (r+t)—W/(r) is again a standard Brownian motion, and is independent of the pre—r o—algebra,

just like as if 7 were a non random fixed time.

3. Stochastic integration — Ito calculus

In the classical calculus of Newton and Leibniz the notion of the derivative, the slope of a curve
at a point that in physics can be interpreted as the rate of change, takes precedence over that of the
integral. Then, the fundamental theorem of calculus relates the integral as a differentiable curve “back”

to the derivative.

Now to define rate of change in terms of Brownian motion directly, i.e., a stochastic “derivative”
of some kind via that of Brownian motion, is meaningless per se, for Brownian motion cannot be
differentiated. Hence, in stochastic calculus, the stochastic integral is defined first. Then the notion
of stochastic differential is given meaning via using it (the integral) as a definition, d la the fundamental
theorem of calculus, of the stochastic differential. Thus, a stochastic differential on its own has no
meaning apart from that assigned to it when it enters a stochastic integral. For example, in the light
of this “revelation”, the meaning of the stochastic differential dS(t) as “driven” by dW(¢) in (1.4) is
determined via the stochastic integral for S(¢) in (1.5).

This assertion is however overcast for the moment by knowing that almost every sample path of
W (-,w) has infinite variation on every finite interval, for if a sample function were to have bounded

variation on any finite interval, then it would have a derivative existing almost everywhere there.

Nevertheless, integration with respect to Wiener measure has been an integral part of Wiener’s

contributions right from the “beginning”, i.e., Wiener (1923), where he introduced the stochastic
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integral I(f,w) = [ f(t)d:W (t,w) = [ f(¢)dW (t) in a somewhat indirect form (cf. Doob, 1953, p. 635).
Here f is Lebesgue measurable and square integrable on (—oo, 00), f € L?(—o00,00), and the standard
Wiener process {W(t,w); 0 <t < oo} is extended to the real line by letting W(t,w) = W(—t,w)
for t < 0, where {W(t,w); 0 <t < oo} is another standard Wiener process that is independent of
W (t,w). For further first time contributions along these lines, we refer to Paley, Wiener and Zygmund
(1933). For a discussion of Wiener type stochastic integrals as limits in L? of sequences of sums, we
refer to Doob (1953, 1X.2). Doob (1966, pp. 70-72) notes that the stochastic integral I(f,w) was one
of Wiener’s most fruitful ideas that was for him (cf., e.g., Paley and Wiener, 1934) and still remains a
fundamental tool in a variety of contexts. Moreover, analogous to I(f,w), Wiener (1938) introduced
multiple stochastic integrals and used them as a fundamental tool for studying polynomial chaoses as

approximations to very general stationary processes.

In parallel to all these developments, the Einstein (1905) and Smoluchowski (1906, 1915) “heat
equation line” of approach to studying Markovian processes has culminated in two pioneering papers

along these lines that, in turn, has led to many others after:

Kolmogorov, A.N. (1931), Uber die analytischen Methoden in der Wahrscheinlichkeitsrechnung, Math.
Ann. 104, 415458,

Feller, W. (1936), Zur Theorie der stochastischen Prozesse (Existenz und Eindeutigkeitssitze), Math.
Ann. 113, 113-160.

As mentioned already, the original derivation of the heat equation in (2.2) from probabilistic
assumptions is due to Einstein. Kolmogorov’s derivation of his famous backward and forward equations
combined with Feller’s existence proof and investigation of the relation between these two equations
have initiated an intensive study of Markov processes with continuous sample paths and transition
densities that satisfy these equations. In their introduction, D.W. Stroock and S.R.S. Varadhan (1979)
write: “The study of diffusion via the backward equation has been one of the more powerful and
successful approaches to the subject and we have included a sketch of this procedure in Chapters 2 and
3.7

Motivated by the analytical approach of Kolmogorov and Feller, and wanting to have a more
probabilistically satisfactory approach to diffusions, P. Lévy suggested the methodology of stochastic
differential equations. This approach was carried out by K. It6 (1942, 1944, 1946, 1951) via defining
stochastic integral equations (cf., e.g., (1.5)), and thus also stochastic integrals with random integrands

and Wiener differentials:

Kiyosi Ito (1942), Differential equations determining Markov processes (in Japanese), Zenkoku Shijo
Sugaku Danwakai 1077, 1352—-1400,

(1944), Stochastic Integral, Proc. Imperial Acad. Tokyo 20, 519-524,
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(1946), On a stochastic integral equation, Proc. Imperial Acad. Tokyo 22, 32-35,
(1951), On stochastic differential equations, Mem. Amer. Math. Soc. 4, 1-51.

Doob (1953, Chapter 1X.5) was first to study the stochastic integral as a martingale. On page 635
of this book he writes: “The stochastic integral in §5 is a generalization of one defined by Ito (1944),
who treated the case in which the y(t) process is the Brownian motion process. The use of martingale
theory makes it possible to construct a closed system of these stochastic integrals, so that the integral
with a variable upper limit defines a process of the same type as the process providing the original

differential element.”

For an excellent survey of, and further developments on the Ito integral, we refer to McKean
(1969) and Doob (1984, Chapter 2.VIII), and for stochastic integrals with differentials more general
than Brownian motion differentials to Dellacherie and Meyer (1980), Chung and Williams (1983), and
Karatzas and Shreve (1988). For an up-to-date appreciation of the interplay between Brownian motion
and martingales, we refer to Doob (1984), and Revuz and Yor (1999).

On the next few pages we hope to gain some insight into the intrinsic nature of Ito integrals of

the form

(3.1) I(t,w) = /0 F(5,w)dsV (5, w) — /0 F()dW (s),

without detailing any of the possibilities mentioned for their construction.
To start with, we have

(3.2) /0 W (s)dW (s) — Wz(t) -

[N

that contains the non-classical “extra” term —t/2.

Let So =0, Sy, = > p_; Xk, n > 1, where Xj, = £1, k = 1,2,.. ., is any numerical sequence of +1.

Then, purely algebraically, we have

(3.3) Z Sk}—le — E Sk?—l(Sk; o Sk;_l)
k=1 k—1
1 . VI

a “complete agreement” with (3.1), a discrete “It6 formula” without any probabilities attached to it.

Assuming now that the sequence of partial sums Sp = 0, {Sk}zozl is a simple symmetric random

walk, i.e.,
(3.4) P{Xizl}:P{Xi:—l}zl/Z, i=1,2,...,
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then (3.3) continues to hold true of course. Now, in this random walk context the “integrand” Sk_1
in (3.3) is non—anticipating, i.e., is independent of the future values Xy, Xiy1,..., the random “signed
measures of integration”. Clearly then, in this probabilistic context, (3.3) is a discrete analogue of 1t6’s

formula in (3.2).

This elegant idea of a simple symmetric random walk as in (3.3) imitating the appearance of the
Ito integral in (3.2) is due to P4l Révész who, after presenting it in a seminar in the eighties at the
Technical University in Budapest, posed the problem of constructing similar discrete analogues for
more general versions of I1to’s formula, as well as that of using them to approximate the latter via some

embedding schemes. This program was successfully carried out by Szabados (1989/90, 1996).

Before sketching some of the further steps of this random walk approach to I(t,w), we have a look
again at (3.2) and (3.3). Assuming (3.4), we have

n

(3.5) E(zn: s,{;_lx,g)2 = (Es,g_l)EX,f

k=1

(3.7) B /0 tW(s)dW(s))Q = 5

which, via (3.2), is of course the same as

(38) E<W;(t) %>2§ <W2(t) 1)2

t

7152 9 27152 9 27152
=B -1)"= B -1)" = 5,

where 7 is chi-square random variable with one degree of freedom.

Thus, as expected, the “L? nature” of (3.3) is also similar to that of (3.2). Moreover, purely

algebraically again, with £ € |0, 1] we have

(3.9) zn: ((1 — €)Sk_1 + €Sk)Xk;

k=1
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= (1 —5)zn:5k_1(5k - Skr—l) +€zn:
A e )
<%i i sia) t g2 se)’)

k=1

ta(F ) (3 g)
o

discrete forward “Ito formula” ) 4 ¢ (discrete backward “Ito formula”)

522 (e 5)”-

Sk (Sk — Sk—=1)
(

DO | —
—

5—272” — 5, ife= O a discrete (forward) “Ito formula”,
- 5_237 if € = 5, a discrete “Fisk (1963,1966)—Stratonovich (1966) formula”,
5_23 + 5, ife= 1, a discrete backward “Ito formula” (cf. McKean (1969, p.35)).

Also, (cf. 2.29 Problem in Karatzas and Shreve (1988)) working directly with W and a partition T1
of [0,t] with 0 <ty <ty <... <ty =t, define the approximating sum

m—1
= 30 (A= W) +eW (L) (W ki) — W (L))
=0
for the stochastic integral fo (s)dW (s). Then, with ||1I]| = maxi<k<m |tk — tk—1|, we have in L?

1 the (forward) Ito integral if £ = 0,
(3.10) lim I.(II) = §W2(t) + (e — )t = < the Fisk-Stratonovich integral if £ = 1/2,
|0 the backward Ito integral if e = 1,

and note that this limit is a martingale if and only if £ = 0, i.e., only when W(-) as an ‘integrand’ in
I-(11) is evaluated at the left-hand end point of each interval [¢;,%;11]. The sensitivity of this limit to

the value of € is a consequence of the unbounded variation of the Brownian path.

Similarly to (3.2), if f € C1(R), then the (forward) Ito formula with the integrand f(W(t)) reads

t W(t) t
(3.11) / FOW (5))dW (s) = / Fls)ds / 7O (s))ds

Let ¢’ = f,ie., g:= ([ f) € C*(R). Then (3.11) reads

(312) sV (©) ~ 9 W ()~ [ VW) + 5 [ o ((s)s
formally leading to the It6 chain rule for differentials
(3.13) dg(W (1)) = g'(W(t))dW (t) + %g”(W(t))dta dt = (dW (1)),

16



with the non-classical “extra” term 1g” (W (t))dt. With f(z) = «, (3.11) implies (3.2), and (3.13) or
(3.2) yields
W2(t) 1
%—3—)fW@ﬂWﬂ+§ﬁ

Purely algebraically again, we have the following discrete version of Ito’s formula (Szabados, T.,

1989/90, 1996):

S _ 1= f(Sip1) — f(Sh)
(3.14) Z; J(8)X i1 = h(Sa) 3 Z; S
with any arbitrary function f: Z — IR, where
k—1 !
O PG+ 5 k) iR,
=1
h(k) = § 0, ] if k0,
—k—1
1
—5fO) = Y FD) - f k), k<1
\ =1

Proof (cf. also Lynn Kondo, 1994 for details). We have

h(Siy1) — h(S;) = f(S:)Xit1 + %f(s”;()iﬂf(si)’

and summing both sides from ¢ =0 to ¢ =n — 1 with h(Sp) = g(0) = 0, we get (3.14).
Now if Sp = 0, {Sk}32, is a simple symmetric random walk, then (3.14) is a discrete version of

Ito’s formula in (3.11). Moreover, a la (3.9), with € € [0, 1], and f and h as in (3.14), we have also

n—1 n—1
1 S; — f(S;
(3.15) (1 =2)f(Si) +ef(Sig1)) Xivr = h(Su) + (= 5) D (Sir1) = J(50)
i=0 27~ Xit1
n—1
h(S,) — % f(SiJr)l() f(SZ), if £ =0, a discrete (forward) Ito formula,
= i1
= < h(Sy), if ¢ = 4, a discrete Fisk—Stratonovich formula,
n—1
h(S,) + % f(SiJr)l() — f(Si), if e =1, a discrete backward Ito formula.
{ = i1

Now, as in the proof of Theorem 6 of Szabados (1996), we take a dyadic partition of the interval
|0,t], each subinterval of length 27, where m is a nonnegative integer, and setting s,,(0) = 0, we

define the Skorohod stopping times

(3.16) sm(k) =min{s: s> sp(k —1),[W(s) ~ W(sm(k 1)) =277}, k=>1,
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for an appropriately shrunk version of (3.15) (cf. Szabados, 1996, Lemma 11). Then, in this appropri-
ately shrunk version of (3.15) the corresponding shrunk random walks can be replaced by W (s, (k)),
and, in lieu of the appropriately shrunk version of (3.15), with € € [0, 1] we get

[t/ As]
(3.17) Do (=) f(Wsmlk — 1) +ef (W (sm (k) (W (sm(k)) = W(sm(k —1)))

k=1

5,

Wsm |t/ A 18 2 W (s (K))) — FOW (s (K — 1
G A ¢ (= 1) S (WE(STE()))))WE(STEL(/@(U))))A

k=1

where Az = 27™, As = 272™ |z | := largest integer < z, and (cf. h(+) of (3.14))

1 (lal/Az)—1
(3.18) TS of(x)Az = e, Az gf(O) + Z fleajAx) + = f( )
with a = W(sm([t/As])) and
1 ifa>0
(3.19) £ = {0 ifa—0
—1 ifa <.

Assuming now that f is a continuously differentiable function on IR, f € C'(IR), then it follows
from (3.17) by Theorem 6 of Szabados (1996) that, as m — oo, the indicated sums (random variables)

converge with probability 1 for each ¢ > 0, and we have

(3200 (1-2) Ot FOV(5)) dV(s) + ¢ / FOW(5)) dW(s)
Lt/ As]
i S (1 F (W (sl 1)) 1 F (W (KDY (W (5 (K)) W s 1)

[t/As] f(W(sm(k))) — f(W(sm(k - 1)))

i 7 e (t/As)) EERNRT
= lim T ) Az + (5 2) lim_ ; O W%
W (t) N
/0 f(x)dx+(5§)/()f(Ws ds
where fg F(W(s)) dW(s) and fo )) dW (s) denote the (forward) Ito and backward Ito integrals,
respectively.

With € = 1/2, we have

(3.21) { / FOV(s)) dw (s) + Otf?ms)) } / FW (s)) 0 dW (s) /()W(t)f(w)d%

the Fisk—Stratonovich integral fg F(W(s)) o dW(s) with the usual formula, while £ = 0, respectively

e = 1, give the (forward) Ito, respectively the backward Ito, formulae. Naturally, (3.20) also implies

an almost sure (probability 1) version of (3.10).
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With g := ([ f) € C*(R) as in (3.11), (3.20) reads

(3.22)  g(W(1)) — g(W(0))

09 W) dIW(s) 1 < / SOV aw(s) - (= 3) / W (s))ds,

formally leading to the combined forward—backward Ito chain rule

dg(W (1)) = (1 —&)g' (W (£))dW (t) + eg" (W (£))dW () — (6 - %)g”(W(t))dt,

with the non—classical “extra” term, — (¢ — 3)g” (W (¢)dt, unless ¢ = 1/2 that, in turn, yields the usual
Fisk—Stratonovich chain rule (cf. (3.21)). With £ = 0, we get Itd’s (forward) chain rule as in (3.13),
and € = 1 yields the backward Ito chain rule.

One of the many prominent examples of the use of [t0’s integral in mathematics is a well-known
unpublished result of Tanaka, the celebrated Tanaka formula (cf., e.g., McKean, 1969), that gives a
representation of the local time process, n(x,t), of a standard Wiener process, introduced by P. Lévy

(1948), via an Ito integral. Namely, we have

Tanaka formula: For any x € R and t > 0, and for all w €

(3.23) n(w,t) = [W(t) — x| —|z] /0 sign(W(s) — z)dW(s),

where n(z,t) is defined by

(3.24) H(A 1) — / (. D)da,
A
i.e., the Radon—Nikodym derivative of the occupation time of W, H(A,t), that in turn is defined by
H(A 1) = Ms:s <t, W(s)e A}

for any Borel set A of the real line, where X is the Lebesgue measure.

For the simple symmetric random walk {Sk}zozl as in (3.4), a natural definition of the local time

process &{(x,n), n=1,2,..., 18

(3.25) Ex,n) =#{k:0<k<n, S, =z}, x=0+1,42,....

In order to better understand the intrinsic nature of Tanaka’s formula (3.23) for Brownian local
time, it is of interest to find a discrete analogue of this formula. We have (cf. Theorem 3 of M. Csorgé—
P. Révész, 1985): For any integer x, n =1,2,..., and for all w € Q,

n—1

(3.26) &(x,n) =S, — x| — || — Z sign(Sk — ) Xgy1.

k=1
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The Tanaka formula of (3.23) can be proved from an appropriately shrunk version of (3.26) via
using strong approximation methods. We note also that the discrete Tanaka formula of (3.26) is a

special case of the discrete Ito formula of (3.14) with f(x) = sign(s — x).

4. On the Black—Scholes PDE and their risk—free portfolio method

Suppose at time ¢ = 0 we sign a contract which gives us the option to buy, at a specific time T
(called maturity or expiration date) one share of a stock at a specified price L (the so-called exercise

or strike price).

If at maturity the price S(T') of the stock is below the exercise price I then the contract is worthless
to us. On the other hand, if S(T') > L, we can ezercise (call) our option (realize the right to buy at

the exercise price I,) and then sell the share immediately in the market for S(T).

This contract, which is an example of a call option, is thus equivalent to a payment of
(S(T) — L)" = max(S(T) — L,0)
dollars at maturity.

We list here some of the standard options (pay—off functions fi(), ¢ € [0,7]), including the one

that we have just used for illustration:
(S(T) — L)" = FBuropean option (option exercised at maturity t — T),
{(S(t) — L)*, 0 <t < T} = American option (option exercised at any time between ¢ — 0
and maturity t = T),
{( max S(s) — L)+, 0< <t < T} = Call on mazimum (look back) option,

toésgt
t +
{ </ S(s)ds — L) , 0<ty <t < T} = Call on average (fixed strike price Asian) option.
to
Assume that the value V' of a call option at any time ¢ € [0,T] depends only on the underlying
stock price S(t) and the time ¢, i.e., we have
(4.1) {V=Vv(tS@), 0<t<T}.

Moreover, assume that the stock price process {S = S(t), ¢t > 0} is governed (driven) by a standard
Wiener process {W = W (t), 0 < < oo} on some probability space (£, .4, P) via the Ito process

(4.2) dS(t) = pS(t)dt + oSHAW (t), 0<t<T,

where ¢ € IR is a constant appreciation rate of the stock price, o > 0 is a constant wvolatility coeflicient,
and S(0) > 0 is the initial stock price. Consequently, both processes are driven by the same Brownian

motion.

20



Let F;, 0 < ¢ < T, be the o-algebra generated by the values of a standard Wiener process
{W(s), s <t} and completed by the addition of sets of P—probability zero. Thus S(t) of (4.2) is

Fi—measurable, and hence so is also the value process V' of (4.1) if it is smooth enough.

Assume further that the real valued function V' = V(¢,S(¢)) on [0, 7] x (0,00) is continuously
differentiable in ¢ and twice continuously differentiable in S, V' € C%2[[0,T) x (0,00)]. Then V is
also an Ito process (cf. Theorem B.1.1 in Musiela—Rutkowski, 1998), and by Ito’s chain rule formula
(cf. (3.13), or (3.22) with £ = 0, for intuition that amounts to saying that we have here a ‘partial

derivatives version’ of (3.13) with respect to ¢ (nonstochastic) and S (stochastic))

oV oV 10°V,
(4.3) av = EdH %d;g‘l’ §W(ds) ,

where dS is given by (4.2). Hence we have

ov ov 107V
— Edt‘F %(M;Sdt + O'SdW) + iw

v oV 182V
= Edt‘F %(uSdtJranW)Jréwa S=dt

ov (8V ov 1 82V)dt,

(4.4) av (uSdt + oSdW )

faSadeJr oy +u585+20 S 552

where, for computing (uSdt + 0SdW)?, we used the following “multiplication table” for differentials
(cf. Karatzas—Shreve, 1988, p. 154)

‘dt aw

a | 0 0
aw | 0 dt

It is easy to see that the geometric Brownian motion process
(4.5) S(t) = S(0)elr=3o oW E) g <t < T,

is a solution of (4.2), starting from S(0) at time 0. Indeed, on letting F(¢, W) := S(t), then Ito’s
formula (cf. (4.3)) for the process in (4.5) is

oF  OF 12 F,
(4.6) ds(t) = Edt + WdW + QW(dW) :
By (4.5) we arrive at the differentials
oF 8°F  OF . OF 1,
o~ 7% wm g S G- (o ge)s

which, in turn, via (4.6) yield (4.2) as desired, namely

4s(t) = oSO (D) + (- %UQ)S(t)dt 4 %025(15) (W (1)

— oS(L)dW (t) + pS(t)dt, 0<t<T.
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The uniqueness of the solution S in (4.5) for (4.2) follows from a general result of Ito, which states

that a stochastic differential equation with Lipschitz continuous coefficients has a unique solution.

Now let us consider a portfolio TI = TI(t) which involves short selling of one unit of a Furopean call
option and long holding 0 units of the underlying asset. Using our general notation in (4.1), the value

of the portfolio 11 is given by

(4.7) =V +05.

Assuming now that a bank account evolves at a riskless interest rate r as in (1.1), and that the

stock price S is driven by a Brownian motion as in (4.2), we have (1.2) and (4.5) at our disposal.

The portfolio TT of (4.7) involves the unknown value V' of a European call option driven by S via
(4.2), and the unknown number 6 times the price of a stock S at any time ¢ € [0,T]. Given (4.2), we
have also (4.4). Consequently, in the light of having the dynamics of V' as in (4.4) and the portfolio TI
as in (4.7) with the pay—off function

(4.8) fr(8(T) = (S(1) - L)*,

the question is this: Given the form of the portfolio TT as in (4.7), can we determine V' so that it should

be a fair (rational) price for this Furopean call option, say today at t = 0, or at any time ¢ € [0, T|?

The portfolio II under consideration reflects a hedge position in that it combines an option with
its underlying stock asset so that either the stock protects the option against loss, or vice versa. As
Black (1989) puts it: “If the stock goes up, you will lose on the option but make it up on the stock.
If the stock goes down, you will lose on the stock but make it up on the option.” By adjusting the
proportion of the option and stock continuously in a portfolio, Black and Scholes (1973) and Merton
(1973) demonstrated that investors can create a riskless hedging portfolio in which all market risks are

eliminated.

The model of a geometric Brownian motion as in (4.5) was suggested by Samuelson (1965). In
combination with (1.1), it underlies the Black—Scholes model and the famous Black-Scholes formula
for the fair (rational) price of a Furopean call option with pay—off function fr as in (4.8). We em-
phasize that we are not concerned here with the question of whether this model is the correct one for
describing asset price fluctuations. Rather, we are only trying to gain some insight into the model via

its mathematics.

The Black and Scholes (1973) formulation establishes the equilibrium condition between the
expected return on the option, the expected return on the stock and the riskless interest rate under
the following hypotheses:

(i) Stock price follows geometric Brownian motion with parameters ;1 and o constants as in (4.2),
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(i1) Trading takes place continuously in time,

(i) The riskless interest rate r of a bank account or bond is constant over time, and investors can
borrow or lend at the same risk—free rate of interest,

(iv) The asset (stock) pays no dividend during the lifetime of the option,

(v

(vi

)
) There are no transaction costs in buying or selling the asset or the option, and there are no taxes,

) Short selling is permitted without penalties,
(vii) There are no riskless arbitrage opportunities.

First we note that, given the assumptions (iv), (v) and (vi), the value formula of the portfolio TT
in (4.7) is correct and, due to assumption (ii), the proportion of the option and stock in the portfolio
can be readjusted continuously. Indeed, we have already assumed that the value V' of a call option will
be as in (4.1) and, moreover, so smooth that V' € C*2[(0,T] x (0, 00)]. Consequently, for V in (4.7)

we already have (4.3), as well as (4.4), on assuming also (i).

As to continuously adjusting the proportion of the short European option and the number of 8
units of the underlying asset in the portfolio Il, we will first keep @ instantancously a constant, and

then, for reasons to come, we will choose it to be equal to g—‘g, that is to say, we proceed via first taking
the differential dI1(¢) to be

(4.9) dll = 6dS — dV,
and then letting

ov
(4.10) 0= 35"

This riskless portfolio method, with (4.9) and (4.10) combined, will result in the correct form of
the Black—Scholes Fundamental Equation (cf. (4.19)), and hence also leads to the correct form of the
fair price for a European call option with pay—off function fr as in (4.8). However, as stressed by
M. Musiela and M. Rutkowski (1998), the risk—free portfolio approach, mathematically speaking, is

unquestionable only in a discrete—time setting. We will return to this point later on (cf. Remark 4.2).

Presently we continue our discussion in the context of Ito calculus essentially along the initial main
lines of the Black—Scholes (1973) paper that tacitly also assumes that their riskless hedging portfolio
I is self-financing, and hence satisfies the condition (cf. Section 5.2 of Musiela—Rutkowski, 1998)

ov
(4.11) ATl — SdS - dv.
First, with dIT as in (4.9), via (4.2) and (4.4), we have
(4.12) dTl = 0dS — dV
B ov ov 5 A N
= O(uSdi + o SAW) — oSS dWW ( - uSe +50%S 852)(#
B ov ov AV 1 5 5,0V
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Now, on choosing 6 = as V. for continuously changing the proportion of the stocks in 11, its instantaneous

rate of change becomes

8V 1 2528 V)dt

(4.13) i = — ( -+ 5

i.e., non-stochastic in t (the random term oS (0 )dW was removed, dll is not a stochastic differential
any more) and, on account of having removed also the term puS(6 — gs ), it does not any more contain
the expected return u on the stock price. Consequently, risk preferences of the investors are also
eliminated, and the portfolio TT becomes risk free (a riskless hedge). Since we assume that there are no
arbitrage opportunities allowed (cf. (vii) above), and that there are no dividends nor costs involved in
‘continuously adjusting’ the portfolio (cf. (iv) and (v) above), T should be just like money in the bank

(cf. (1.1)), i.e., it should grow like
(4.14) dTT = rT1dt,

Indeed, otherwise, i.e., if a hedged portfolio were to earn more than the riskless interest rate r, then
an arbitrageur could earn ‘limitless’ riskless profit by simply borrowing as much money as possible

(cf. (iil)) to buy hedged portfolios.

Consequently, by (4.13) and (4.14) combined, we have

(4.15) rIldt — ( 50t )dt
with

oV
(4.16) M= 2eS—V

by (4.7) and (4.10). Hence we obtain

ov WV 1,00V
(4.17) r(5gS - V)dt (at 252852)dt

and, on account of the dt differentials being common to all factors on both sides, we arrive at the

partial differential equation (PDE)

(19 (558 V) = (Gt 175

Conclusion 4.1. Rearranging the terms in (4.18), we obtain the PDE

v 12528_V+T58V rvV =0,

(4.19) ot 052 oS
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that is usually called the Black—Scholes PDE, or the Black—Scholes Fundamental Fquation, which is to

be solved now subject to the terminal condition

(4.20) V(T,8(1) = (S(1) - L),

that is due to the pay—off function fr as in (4.8), and also subject to the natural boundary condition
(4.21) V(t,0)=0, ¢el0,T].

This equation has an explicit solution. It is given by

(4.22) V(t,S(t) = St)®(d) — Le " TDd(d — o/T — 1),
= Cy(S(t), L, T — 1),

where ) )
1.2
diln + (r+ 20)(T t)j 0<t<T,
oVl —t
and . .
d(z) = —— 20y, x € R,
(z) el

the unit normal distribution function.

Given the Black—Scholes model, this solution V' of the Black—Scholes PDE that we have denoted
by Cy is the market value of, a fair (rational) price for, a Furopean call option at time t € [0, T| with
expiry date T, pay—off function fr = (S — L)* and strike (exercise) price L, when the time left till
maturity is T — ¢.

On setting t = 0, we obtain the Black—Scholes formula as quoted in the Introduction of this
exposition, with C' = Cy, S = S(0), N := &. O

Remark 4.1. Solving the Black—Scholes PDE (4.19) subject to (4.20) and (4.21) is equivalent to

(4.23) V(t,S5(t) = e " TOB((S(T) — L) | 7)
— CUS(), LT — 1),

where C} is as in (4.22), and S(¢) now is the solution of

(4.24) dS(t) = rS(t)dt + oS(t)dW (t)
to begin with, i.e., instead of the equation (4.5) we start with
(4.25) S(t) = S(0)elr=2o )W (D)
where we kept the same notation for the sake of simplicity.
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The latter is the so—called discounted stock price of the Black—Scholes model that eliminates the
constant appreciation rate p of the stock price (cf. (4.2)) by arriving at the Black—Scholes formula via
(4.23) with t — 0. O

The Feynman—Kac type version (4.23) of (4.22) is appealing. It is more informative of the nature
of the solution of the Black—Scholes PDE (4.19), subject to (4.20), than its direct version (4.22) is. As
an illustration of the use of (4.23) for calculating the Black—Scholes formula, we derive its form via

calculating Co(S(0), L, T') directly from it. Namely, we obtain

(4.26) Co(S(0), L, T) = e " TE((S(T) — L)*| 7o)
= TE((S(T) - 1))
— S(0)®(d) — Le_TTCD(d oV'T),
where
(4.27) g UH&%% )
Proof. We start with (cf. (4.25) with t =T)
(4.28) X = X(T) ln% ~(r 50N oW (D)

and consider

(4.29) BE(S(T) — L)*

/ (S(T) — L)dP
(S(T)>L}

/ S(T)AP — LP{S(T) > L}
(S(T)>L}
T LP{S(T) > L},

where P here stands for the normal distribution of the random variable X as in (4.28).

Calculating now the first term I of (4.29), we have

1= 5(0) /{ s exp (ln%)dP

s(o)
{@v%ﬁﬂf}d
Ingbs \/ V2762 T 20%T Y
2
(v — (r+30°)7) }
d
V2r®T Jinet e P { 20°T !

1 2
- S(O)erT— lnele —(rria2)T e’ /Qdy
V2T %

= S(O)eTT\/% eV 2y
—d

= S(0)e"T(1 — ®(—d)) = S(0)e" T d(d),

— 5(0)
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and for the second term of (4.29) we conclude

P{S(T) > L} = P{ln

=®(d—oVT). O

Remark 4.2. In deriving the Black—Scholes PDE (cf. (4.18) and (4.19)), our use of II of (4.7) as a
continuously changing riskless hedging portfolio via (4.9) and (4.10) amounts to saying that, to begin

with, we took

1%
(4.30) M= 28—V

to be the value of the portfolio at time t € [0,T], and then assumed also that TT satisfies the condition

oV
(4.31) dil = Z=dS — dV.

This, in turn, leads to the Black—Scholes PDE (cf. (4.18) and (4.19)). Consequently we can conclude
that, on assuming (4.31), the Black—Scholes PDE, and thus also the Black—Scholes European call option

valuation formula (4.22), can be obtained via the risk—free portfolio approach.

On the other hand, Musiela and Rutkowski (1998, Proposition 5.2.1) show that if TT is given by
(4.30) with the function V (¢, S(t)) = C:(S(t), L, T —t) as in (4.22) that solves the Black—Scholes PDE,
then the condition (4.31) fails to hold. As a consequence, they conclude that the portfolio TI as in
(4.30) is not self-financing (cf. Section 5.1.1 in Musiela and Rutkowski, 1998), for if it were, then (4.31)
would be satisfied. However, the expected value of the additional cost associated with II up to time
T is zero with respect to the measure generated by S(t) as in (4.25). This property explains why
the risk—free portfolio approach leads to the correct form of the Black—Scholes formula. For details
substantiating these remarks we refer to Musiela and Rutkowski (1998, Section 5.2), who mention also
that Bergman (1982) was most likely first noting that the risk—free portfolio does not satisfy the formal
definition of a self-financing strategy. For the latter notion we refer to Section 5.1.1 of Musiela and
Rutkowski (1998), who in their Section 5.2 also stress the point that the risk—free portfolio approach
is unquestionable in a discrete—time setting. Merton (1973) derived the Black—Scholes equation via

constructing a self-financing portfolio containing assets, options and riskless bonds. O

We note in passing that with S(¢) as in (4.25) we have
(4.32) B(e"TIS(T)|S(t))
N —r(r—1yS(T)
S(t)E(e =0 ‘S(t))
—S(t), 0<t<T,
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i.e., the discounted risk—free asset price process of the Black—Scholes model
(4.33) e TS, 0<t<T,

is a martingale that, in turn, yields also (4.23) as an alternative view of the Black—Scholes formula.

Moreover, the valuation procedure of (4.23) in terms of (4.24) = (4.25) can be extended to any
European contingent claim (option) that is attainable (cf., e.g., Section 5.1.2 of Musiela and Rutkowski,
1998) in the arbitrage—free Black—Scholes model, and whose values depend only on the terminal value

of the stock price.

We go back to (4.2) for a moment with a standard Wiener process W on some probability space
(Q, A, P) and filtration F, 0 <t <T, by the values of {W(s), s <t} and completed by the addition
of sets of P—probability zero.

Briefly, in general, a Furopean contingent claim (an option) which settles at time T is defined
as any JFr-measurable random variable. The market is said to be arbitrage—free if there exists a
probability measure P*, that is equivalent to P, under which the process e="*S(t) is a martingale. The
market is said to be complete if and only if this probability P* is unique. An application of Girsanov’s
theorem shows that the arbitrage—free Black—Scholes market is complete (cf. Lemma 5.1.2 in Musiela
and Rutkowski, 1998), and that under P*, the stock price follows the stochastic differential equation
of (4.24), where W is a new standard Wiener process (though we keep the same notation as in (4.2)
for simplicity) under P*. Also, for the sake of simplicity, we continue writing P instead of P*, and
continue using the same notation F; for filtration as well. In this model, let 7(S(t), T — t) stand for
the market value of, a fair price for, a Furopean contingent claim option which settles at time 7', and
whose values depend only on the terminal value of the stock price. As a generalization of Remark 4.1

we have

Remark 4.3. (cf. Corollary 5.1.3 in Musiela and Rutkowski, 1998). Solving the Black—Scholes PDE
(4.19) for V(t,S(t)) € C12[[0,T) x (0,00)], subject to the terminal condition

(4.34) V(T S(T)) = g(S(T)),

is equivalent to

(4.35) V(t,5(1) = e TV E(g(S(T)| )
= m(S(t), T — 1),

where g(S(T')) is the value of an attainable European contingent claim (option) which settles at time
T in the arbitrage—free Black—Scholes market whose unique stock price process S(¢) is the solution of
stochastic differential equation (4.24), and ¢g(S(T)) is assumed to be integrable under P of the latter

process. O

28



Remark 4.4. On taking g(S(T)) = (S(T) — L)* in (4.34), we obtain Remark 4.1. The latter relates
Conclusion 4.1, i.e., the solution (4.22) of the Black—Scholes PDE (4.19) subject to (4.20) and (4.21) to
the Feynman—Kac type formula (4.23), whose validity we illustrated by direct calculations (cf. (4.28)—
(4.29)) of the Black—Scholes formula as stated in (4.26). Roughly speaking, the Feynman—Kac formula
expresses the solution of a parabolic PDE as the expected value of a certain functional of a Brownian
motion. Indeed, one of the basic ingredients of the proof of Corollary 5.1.3 in Musiela and Rutkowski
(1998) (cf. the preceding Remark 4.3, which is a generalization of Remark 4.1) is to show that V" as in
(4.35) satisfies a special case of the Feynman—Kac PDE (cf. Lemma 5.1.3 in Musiela and Rutkowski,
1998) and this, in turn, leads to concluding also that it satisfies the Black—Scholes PDE (4.19) as well.

As to how to discover V' as in (4.35) is based on the general martingale theory we alluded to in
our lines right after Remark 4.2 that, in turn, led us to Remark 4.3. Namely, in the arbitrage—free
Black-Scholes complete market, we have the so—called risk—neutral valuation formula which, in terms
of P* as right before Remark 4.3, reads as follows (cf. Corollary 5.1.1 in Musiela and Rutkowski, 1998):
Let X be a P*—attainable European contingent claim which settles at time 7. Then the arbitrage
price (X)) at time ¢ € [0,T] in the arbitrage—free Black—Scholes market is given by the risk-neutral

valuation formula
(4.36) m(X) = e T Ep. (X|F), te]0,T).

In particular, the price of X at time t — 0 equals 7o(X) = e "7 Ep-(X).

In lieu of explaining new notions, notations and technologies for which we refer to Section 5.1.2 of
Musiela and Rutkowski (1998), we “identify” them via adaptation in terms of the already introduced
ingredients of Remark 4.3 as follows: X plays the role of g(S(T)), P* is equivalent to P, and m(X)
plays the role of m¢(S(¢), T — t). O

The papers Black and Scholes (1973), and Merton (1973) were written before the development of
the martingale approach to financial mathematics. In fact they were the ones that inspired the latter
“fair games” approach to the problems in hand. Our way of arguing Conclusion 4.1 and Remark 4.1,
and then “explaining” the latter via Remarks 4.2—4.4 reflects only a mere outline of a small part of

this development.

5. On the Black—Scholes fair price formula and volatility

Merton (1973) notes that the manifest characteristic of the Black—Scholes formula (4.26) is the
number of variables that it does not depend on. Most of all, it does not depend on i, the expected
return of the common stock. Consequently, the risk preferences of the investors for the stock on which
the option is based do not affect the option price formula. Inspired by Black and Scholes (1973), this

notion of risk neutrality has become an important theme in option pricing theories of economics.
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The valuation formula (4.22) depends on five parameters: S(¢t), T — ¢, L, r and o. All but the
volatility o > 0 are observable parameters. Hence the usefulness and the hopefully reliable potential
applications of the Black—Scholes formula hinge on the investors ability to make reliable forecasts of
this volatility parameter of stock prices. Producing good, reliable estimators for o for future use is,

however, not an easy task. For some details and references on this problem we refer to Section 6.3 in
Musiela—Rutkowski (1998).

Roughly speaking, there are two main lines of approach to estimating the wvolatility parameter o
that is assumed to be a constant in the stock price process of the Black—Scholes model (cf. (4.2)).
Namely, (a) one can use historical data, or (b) one can infer the volatility that is implied via the

observed market price of an option.

As to (a) historical volatility, the use of historical data to estimate future stock price volatility is

usually an unsatisfactory procedure, for stock volatility tends to be unstable through time. O

Concerning (b) implied volatility, this procedure is to infer the investment community’s concensus
on the volatility of a given stock via examining the prices at which options that are based on that
stock trade. In particular, the unknown volatility ¢ of a stock on which one has a European call
option is inferred (derived) from its Black—Scholes fair price formula (4.22) = (4.23) via solving the
latter at any given time ¢ € [0, 7] for the only unknown parameter o in it, given that for C; we take
the current market price of this call option. Since (%} is a non—linear equation, it cannot be solved
explicitly in terms of S(t), L, r and T — t. That C% is an increasing function of ¢ helps to create
iterative algorithms. Solving for ¢ along these lines, in “market practice” several implied volatility
values are obtained simultaneously from trading values of different European options that are based on
the same underlying stock, and a “properly” weighted average of these standard deviations is computed
and viewed as the implied volatility of the given stock. This information, in turn, can then be used
by traders to “set” the volatility value accordingly for the given stock of all the European options
that are based on it, and they are interested in. In particular, this means that they would be quoting
any such option’s market price in terms of the above arrived at implied volatility. Thus, in essence,
implied volatility becomes a means of quoting option prices. Namely, given the implied volatility value,
the Black—Scholes fair price value formula (4.22) is now used directly to calculate these “fair” market
values that become the quoted European option prices of the traders at time ¢ € [0, T, when T — ¢ is
the time left to maturity time T. Now, if implied volatility at any time ¢t € [0,T], say oimp(t), were
the same for all European call option market prices that are based on the same underlying stock, that
is to say, if it were not a function of the contractual features of an option that are parametrized by
the remaining time T — ¢ to maturity T" and the value L of the strike price, then replacing ¢ in C}
by such an implied volatility, say Oimp, the thus estimated Cy of (4.22) would continue to be a fair
price formula at any time ¢ € [0,T] for all European call options that are based on the same stock.

Unfortunately, taking for C} the current market price of a European call option and then solving for o
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the formula of (', does not result in producing such a oimp solution that would possess these desired
properties. Nevertheless, the overall concensus in the financial literature seems to be that, in terms of
their predictive power, oimp estimates of volatility outperform more straightforward historical volatility

estimates. O

The problem of estimating the volatility o of various stock prices by oimp for the sake of the
applicability of the Black—Scholes valuation formula C (cf. (4.22) = (4.23)) in which o is the only
parameter that is not directly observable in the market is (appears to be), at the first sight, somewhat
similar to Einstein (1905)’s theory of estimating the Avogadro number N via the use of the postulated
diffusion constant ¢ > 0 for a Brownian motion (cf. Einstein’s assumptions in the paragraph right above
(2.1), and (2.1), (2.2), (2.3)) with

o
f i

where T is the absolute temperature, f is the friction coefficient of the substance in hand, and k is the

(5.1) c

Boltzman constant. In particular, in liquids e.g., for spherical colloidal particles of radius r we have
(5.2) f=6mnrN,

where n is the viscosity coefficient and N is Avogadro’s number. This relationship for f is only valid
for particles of such size which obey Stokes’ resistance law. Thus, in ¢ of (5.1) with f asin (5.2) all the
parameters are given under ideal conditions, except Avogadro’s number N. Multiplying both sides of
(5.1) by ¢ > 0, does not change any of the parameters involved. Using his theory of Brownian motion
that he derived wvia his basic assumptions, Einstein (1905) succeeded in estimating ct for a fixed ¢,
and hence also ¢. Thus Einstein determined empirically the Avogadro number N. This, in turn, had

successfully settled the Avogadro hypothesis (cf. the paragraph containing (2.3)).

Now, in a similar vein, if on taking for C its current market price, o in Cy of (4.22) = (4.23) would
not become a function of its other parameters that are all observable, then on replacing it by Oimp,
the latter would acquire an “Avogadro number role” in that it would render the thus estimated C; to
continue to be a valid value formula for all European call options that are based on the same stock.
That this could not have turned out to be true should be, in retrospect, not too surprising in view of the
fact that, in combination with (1.1), the Black—Scholes model and formula is based on assuming, i.e.,
not on deriving, that stock prices follow geometric Brownian motion (cf. (4.2) = (4.5)) with constant
coefficients. Though, via (4.11), randomness in terms of stochastic differentials is removed (together
with the otherwise possible risk preferences of the investors) from the portfolio (cf. (4.13)) and then,
via (4.14), one arrives at Conclusion 4.1 with the option pricing formula C; as in (4.22), the latter
being the solution of the Feynman—Kac type PDE (4.19) (subject to (4.20) and (4.21)), it (i.e., Ct) is
necessarily of the Feynman—Kac type form as in (4.23) that of course is very much a function of the

terminal condition (4.20) that is based on the strike price L and the geometric Brownian motion in
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(4.25) (cf. (4.28)), which in turn, in the Black—Scholes model, is consequential to that of assuming (4.5)
to begin with.

In a nutshell, after estimating, by whatever means, the volatility parameter o of the geometric
Brownian motion in (4.25), say by &, a random variable based on observations on S(-) up to time ¢ > 0,

the resulting discounted stock price process

(5.3) S(t) = 5(0)elr=2o) oW ()

ceases to be Gaussian, it will not be the solution of the Ito process of (4.24) any more, nor will

(5.4) Cy:=S(S), L, T —t) =V(t,5(t))

be the solution of the Black—Scholes PDE (4.19) subject to the estimated terminal condition

(5.5) V= V(T,5(T)) = (S(T) — L)".

In particular, letting ¢ = Oimp, one would not know how Ciyp = € as in (4.22) with Gimp
replacing o in it, could possibly result from considerations along “the lines of” (5.3)—(5.5). They are
mentioned here to highlight the mathematical difficulties that we are to face already when having
the statistical problem of estimating volatility in the simplest possible situation of dealing with only
one bank account as in (1.1) and only one Ito process as in (1.4) under the Black—Scholes model as
concluded in (4.22) = (4.23).

In spite of the somewhat impossible situation created by difficulties in estimating volatility, the
Black—Scholes option pricing formula apparently remains very popular on the trading floor. And,
indeed, the very reason for its popularity there seems to be that the only “culprit” in the formula that
is not directly observable in the market is volatility. This, in turn, gives an options trader the straight
and simple “insight”: sell European style derivatives (options) when volatility is high, and buy them
when ‘volatility’ is low. Apparently, option prices obtained within the Black—Scholes framework for
short—maturity options are reasonably near to those observed on the option exchanges. As to what
extent this coincidence may very well be a consequence of the notoriety of the Black—Scholes formula
among traders and other market practitioners remains somewhat of a puzzling question. For example,
what if we were to assume as an alternative that, instead of the stock price process equation (4.25),

we would start with a geometric fractional Brownian motion of the form
(5.6) Su(t) = Su(0)exp {(r — Ho*)t*" +V2HoWg (1)},

where the centered Gaussian process {Wg(t); 0 <t < oo} with stationary increments and Wx(0) =0

is a fractional Brownian motion of order 0 < H < 1, i.e.,
(5.7) EWg(t) — Wi(s))” = |t — ™,
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and
(5.8) Wi (t) — Wa(s) EN(0, |t —s*) for t,s>0.

It is of interest to note that W, is a standard Wiener process, and Sy /2 of (5.6) is the discounted
stock price process of (4.25). Hence it is of interest to learn if the geometric fractional Brownian
motion {Sg(t); 0 <t < oo, 0 < H <1} asin (5.6) could be regarded as the solution of an appropriate

stochastic differential equation driven by Wyg. Be it as it may, for the time being, we compute the

formula
(59) Co,nr(Su(0), 1, T) = ™" (S (T) — L)+ | 74)
— 6—7‘T2HE((SH(T) - L)+)
— S (0)®(dy) — Le™ T ®(dy — V2HoTY),
where
In 320 Ho2\T2H
(5.10) Ay — ML + (r + Ho?) |

V2HoTH

which in turn could possibly be argued as an alternative to (4.26) in the Black—Scholes market for
H # 1/2, on noting that Cy ;5 = Cp of (4.26). In this regard we should however also point out that
now, in addition to the problem of estimating the volatility ¢ > 0, we would also have to estimate
H € (0,1), the so-called Hurst parameter. The case of H € (1/2,1) is of special interest in view of the

thus introduced long range dependence into the stock price process equation (5.6) for Sg.

6. Strong asymptotic properties of integral functionals of geometric stochas-
tic processes

The intensive concentration of many papers on various geometric stochastic processes in financial
mathematics has triggered a renewed interest in studying the intrinsic fine analytic properties of such
processes. In this section we summarize some of the recent results of E. Csdki-M. Csorgé—A. Foldes—
P. Révész [CsCsFR] (1998) along these lines. In our paper we study some asymptotic properties of two

types of integral functionals of geometric stochastic processes, namely those of
t
(6.1) Al) = / exp(X(W)du,  0<(< oo,
0

and



with some « > 0. These types of stochastic processes have been extensively investigated in financial
mathematics. For example, they yield various option pricings, annuities, etc., by appropriate selection
of the processes X () and V(+) (cf., e.g., Dufresne, 1989, 1990; Yor, 1992a,b; De Schepper and Goovaerts,
1992; De Schepper, Goovaerts and Delbaen, 1992; Gruet and Shi, 1995; Rogers and Shi, 1995; Goovaerts
and Dhaene, 1997). In particular, our investigations were inspired by Gruet and Shi (1995), where they

establish integral tests for upper class functions in the special cases
t
At) = / exp(W(u))du, 0<t<oo,
0

and

B(t) = / exp (W(u) — E) du, 0<t<oo,
0 t
where {W(u); 0 <u < oo} is a standard Brownian motion (Wiener process).

We show that, under fairly general conditions on the respective processes X () and V(-), log A(t)
and log B(t) behave like supg<, <; X (1) and supp<, < oo (V(u) —u®/ t), respectively, for large t. Namely,

we establish two strong invariance principles as follows.

Theorem 6.1 (CsCsFR, 1998). Let the stochastic process {X(t);0 < t < oo} have almost surely
continuous sample paths, P(X(0) =0) =1 and put

Z(t)=log A(t) and U(t)= sup X(u).

0<u<t

Assume that for the increments of X (t) we have

sup sup |X(s+v)— X(s)| =O(r(t,a)) as.

0<s<t—a; 0<wv<a,

as t — oo, with some nondecreasing a; (1 < ax <t) and rate r(t, az).
Then
1Z(t) — U(t)] = O(r(t,a¢) +logt) a.s.

as t — oo.

Theorem 6.2 (CsCsFR, 1998). Let the stochastic process {V(t);0 < t < oo} have almost surely

continuous sample paths,

PV(0)=0)=1 and P <limsup V(t) = +oo> =1.

t— o0

Put
Y(t) =log B(t) and R(t)= sup <V(u) - —) .

0<u<oo
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Assume that for the increments of V(t) we have

sup sup |V(s+v)—V(s)| = O0(q(t,ar)) as.

0<s<t—a; O<v<ay

as t — oo, with some nondecreasing a; and rate q(t,a;). Furthermore, suppose that
V(s)<s® for s>si(w), where 0<f<a.

Then

1

V(1) — R(t)| =0 (q (tw , at) +log t) a.s.

as t — oo.

For the process {R(t); 0 <t < oo} of Theorem 6.2, we also prove quite a general LIL—type result

that may be of independent interest on its own, and it reads as follows.

Theorem 6.3 (CsCsFR, 1998). Let V(-) and R(-) be as in Theorem 6.2 and assume that

where g(t) > 0 is regularly varying at infinity with index p (0 < p < «) and u*/g(u) = h(u) is

continuous and strictly increasing for u > ug. Then

i s = (2)77 - (8)7 e

where f() is the inverse of h(-).

As an application of Theorem 6.1, we now detail, as in CsCsFR (1998), the case of geometric

1

Brownian motion in the Black—Scholes model (cf. (4.25)), where we now put ¢ = r — 50 and let

S(0) = 1. Accordingly, we consider
t
(6.3) At) = / expleu+ oW (u))du,
0
the stock price process that corresponds to that of the call on average (Asian) option with to = 0 in

the Black—Scholes model.

Studying the asymptotic properties of this stock price process in terms of that of

(6.4) U(t) .= sup (cu+ oW (u))

0<u<t

may be of some special interest, for in contrast to the Black—Scholes formula for a European call option,

there is not yet a closed analytic fair price formula available for the Asian option. In this regard we
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refer to L.C.G. Rogers and Z. Shi (1995). Formulating their more general results in terms of our

terminologies, they develop the martingale

+

and reduce the problem of calculating this value at time ¢ € [0, T| of an Asian call option with maturity
time T and fixed strike price L to solving a Feynman—Kac type parabolic PDE. They provide numerical

solutions for their PDE, as well as a lower bound for

e TR lAT — L +,
(740-1)

which turns out to be so accurate that, for all practical purposes, it is essentially the true price. For
analytical tools which, in turn, lead to quasi—explicit pricing formulas for Asian options, we refer to
Geman and Yor (1993).

As to comparing A(t) to U(t), in Theorem 6.1 we select a; = 1. Then we have (cf. M. Csérgs—
P. Révész, 1979, and 1981, Theorem 1.2.1) r(¢,1) = O (v/Iogt). Consequently, as ¢t — oo,

(6.5) |2(t) — U(t)] = O(logt) ass.,

where Z(t) = log A(t) with A(t) as in (6.3) and U(t) is as in (6.4).

In case ¢ = 0, some well-known results can be applied for U(t), yielding the corresponding results
for Z(t), some of which are already known. For simplicity suppose o = 1. By (6.5) we have a law of

the iterated logarithm for Z(t) as follows

log [ exp(W (u))d
(6.6) lim sup 8 fo exp(W(w))du
t— o0 v 2t 10g 10gt

via that of U(t), and, more generally, for the increments of Z(t) with 0 < ar < T being a monotonically

=1 a.s.

increasing function such that T'/ar is increasing, we obtain

fOtJraT exp(W(u))du

su lo
. ogthp—aT 5 fot exp(W (u))du
lim sup =1 a.s.,

T=oo (aT ( log % + 2loglog T))l/2

provided that ar(logT)™! — oo (cf. Cséki et al. (1983)). Moreover, if log(T/ar)(loglogT)™! — oo,
then in (4.5) the limsup can be replaced by lim.

Similarly, for log fg exp(W(u))du we have the same Strassen’s LIL, as well as upper and lower

class results, as for supp<,<; W(u). The upper class results were first established by Gruet and Shi
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(1995), who gave a direct proof (cf. also Bertoin and Werner (1994), and Keprta (1997)). Moreover,

we have as well

Jim P<log /0 t exp(W(u))du < xﬁ> = lim P< sup Wu) < a:\/1_5> —20(z) — 1.

0<u<t

In case ¢ < 0, lim;—o A(%) is finite almost surely. Hence its stochastic fluctuations will mainly be

interesting in the case of ¢ — 0, which basically yields the process B(t) with o =1 in this Wiener case.

As to the case of ¢ > 0, it is well-known (cf. Karatzas and Shreve (1988), p. 265) that

(6.7) P<sup(aW(8) +cs) < y) = q>(y0\/§t) —exp <@)¢<i\/{gd)'

s<t o2

From (6.7) it is easy to conclude also

lim P<sup(aW(s) +es) —ct < yx/?f) = @(%)

t—o0 s<t

which, in turn, yields

t
lim P<log/ exp(oW (u) + cu)du — ct < y\/l_f) = q)(ﬂ).
t—0o0o 0 ag
Moreover, observing that

ct+oW(t) < sup (cu+oW(u)) <ct+o sup Wiu),
0<u<t 0<u<t

we arrive at
sup (cu+ oW (u)) —ct
0<u<t

li — =1 as.
i (202t log log t)1/2 o5

Hence, just like in (6.6), we conclude

i su log fg exp(oW (u) + cu)du — ct 1 as
P (202t log log t)1/2 o

In order to study the increments of our processes we point out the following simple observation:

for any continuous process n(t) we have

(6.8) s n(s) — sup n(s) < ig};(n(t +v) —n(t)).

Hence by (6.8) we get

sup < sup  (cu+oW(u) — sup (cu+0W(u))>

0<t<T —ar \ 0<u<ttar 0<u<t

<car+ sup sup o(W(t+v) — W(t)).
0<t<T —ar 0<v<ar
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Applying (6.5) again, and using Csorgé and Révész (1981, Theorem 1.2.1) again, we arrive at

fOtJraT exp(cutoW (u))du

su lo - —ca
. OStSTp—aT 8 fo exp(cutoW (u))du T
lim sup 73 <1 a.s.
T=oo (202aT ( log % + loglog T))

where 0 < ar < T is a nondecreasing function of T for which T'/ar is nondecreasing, and ar(log T)~! —

+00.

In CsCsFR (1998), we also establish similar results for A(t), respectively defined in terms of
geometric fractional Brownian motion, geometric Gaussian processes in general and Ito processes in
particular. Moreover, we also study the geometric process B(t) in terms of all these processes, i.e., with
V of (6.2) respectively being a fractional Brownian motion, a Gaussian process in general, and an Ito

process in particular. Here we present only the case when V' = W. Namely we now let

B(t) — /0 " exp <W(u) - “;) du,

where W (u) is a standard Wiener process and « > 1/2. By Theorem 1.2.1 of Csérgé and Révész
(1981), choosing a; = 1, we have

V(t) — R(t)| = O(logt)  a.s.

as t — oo. Recall that here Y (t) = log B(¢) and

R(t)— sup <W(u)u—a>.

O<u<<oo t

We apply Theorem 6.3 with g(t) = (2tloglogt)/?, p = 1/2. Since
F(t) ~ t751 (2loglog )T,

we obtain

. Y(t) : R(t)
limsup — — = limsup — —
t—oo {2a—1 (2 loglogt) So—1 t—oo {2a—1 (2 loglogt) Sa—1

B (i)ﬁ B (i)zi%
- 2 20 &5

lim su ﬂ*limsu ﬂfl a.s
taooptloglogt - 75_>0<>pzfloglogt 2 o

For a=1 we get

and note again that upper and lower classes for Y'(¢) in this case were obtained by Gruet and Shi (1995)
via direct calculations (cf. also Keprta (1997)).
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