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Abstract

We propose a data-based procedure for combining a number of individual classifiers
in order to construct more effective classification rules. Under some regularity conditions,
the resulting combined classifier turns out to be almost surely superior to each of the

individual classifiers. Here, superiority means lower misclassification error rate.

1. Introduction

Consider the following standard K-class classification problem. Let (X,Y) be a random
pair in R4 x {0,1,--+, K — 1}. The R%valued vector X is called the feature or predictor
vector, which is always observable, and Y is called the class membership and takes values
in {0,1,---, K—1}. The problem of classification is to predict Y based on X, as accurately
as possible, where accuracy means lower misclassification error rate. More specifically, let
g be a classifier, i.e., any map of the form g : %R¢ — {0,1,---, K — 1}, which one
uses to predict Y based on X. The problem is then to choose g in such a way that its

misclassification error rate, err(g), defined by

err(g) = P{g(X) # Y},
is as small as possible. The best classifier gg, called the Bayes classifier, is the one with
the lowest error rate; i.e., gy satisfies:

P{g.(X) #Y} = inf P{g(X) #Y}.

g: R4—{0,1,--,K—1}

Here the Bayes classifier g, predicts Y as belonging to class &’ if the posterior probability
P(Y=k'X=x) > P(Y=k|X=x) for all £ € {0,---,K—1}. Ties are usually broken in
favor of the class with the smallest index k. Clearly, when the distribution of (X,Y)
is completely known, one would try to find the optimal classifier g; which attains the
lowest error. Unfortunately, in practice, the underlying distribution of the random pair

!Supported in part by a grant from NSERC Canada.



Combined Classification 2

(X,Y) is unknown and the only information available is a training sample of size n, T, =
{(X,Y1),---, (X, Yn)}. Here (X;,Y;)’s are independently and identically distributed
R x {0,1,---, K — 1}-vlaued observations from the distribution of (X,Y). The goal is
then to find a data-based classification rule g, whose conditional misclassification error

rate
errn(gn) = P{gn(x) 7é Y ‘ Tn}

is somehow as small as possible. A classification rule g, is said to be consistent if
err,(gn) —p €rr(gs), as n — oo.

We say g, is strongly consistent if the convergence holds almost surely.

Some of the popular classification rules are histogram classifiers, Nearest-Neighbor (NN)
rules, Fisher’s linear discriminant function (LDA), and tree classifiers. Different classifiers
have different properties and their performance can depend on many different factors. For
instance the LDA performs well for normal populations. In general, in a given situation,
it is not clear at all as to how one should choose a classifier. In this article we propose
a procedure for combining a number of candidate classifiers in order to develop more
effective classification rules. The proposed procedure is easy to implement and yields
improvements in the overall error rate relative to the individual classifiers. The idea of
combined estimation is relatively new and goes back to Breiman’s [1] “Stacked Regres-
sion”, and Wolpert’s [12] “Stacked Generalization”. More recent relevant papers are those
of LeBlanc and Tibshirani [6], Mojirsheibani [8, 9, 10]. A non-technical presentation of
the subject appears in chapter 11 of Schiirmann [11].

2. The Proposed Method
Let gn1(X),- -+, gn,m(x) be M individual classification rules, where each g, , is a map of
the form

g : {R*x{0,1,--- K —1}}" x R — {0,1,---, K — 1}.

Let (X,Y) be a new (future) observation where X is observable but not the class mem-
bership Y. Define the vectors Wz and W according to

Wi = W(XZ) = (gn,l (XZ)7 T gn,M(Xi)) and W = W(X) = (gn,l (X)a T gn,M(X))'

We will consider the non-iid discretized “data”: (Wi,Y1),---,(W,,Y,) and the dis-

cretized “future observation” (W, Y'), where Y is to be predicted. One possible combined
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classifier is v, where

Yn(X) VY (Gn,1 (%), Gy (X))

= argmaXocpcx_1 Y HYi = k}{gnm(Xi) = gnm(x); m=1,--+, M}

i=1

= argmaxeceer ;3. HY; = FI{W, = W)}, (1)

i=1

where I{ A} is the indicator of the set A. In the case of ties we take 1), (x) to be the smallest
k for which (1) holds. The above procedure may be viewed as a multinomial discriminant
function applied to the non-iid “data”: {(W,,Y;)}"_,. The combined classifier ¢/, of (1)
and its optimal properties were studied by Mojirsheibani [9]. The problem of classifying a
discrete-valued covariate vector into one of K classes, based on iid observations, is not new
and can be tackled by a number of different effective procedures. For instance, in addition
to the usual multinomial discrimination rule, one can also consider the more flexible kernel-
based approach of Aitchinson and Aitken [1], the nearest-neighbor procedure of Hills [5],
and the adaptive weighted nearest-neighbor estimator of Hall [4]. For our setup, however,
the situation is not quite straightforward. To appreciate this observe that the components
of the non-iid pseudo-covariate vectors V/Vl, ‘. ,Wn are themselves classifiers that could
depend on the data in some complicated ways. As a result, standard techniques (based on
iid data) are no longer appropriate for proving consistency results. In fact, it will become
clear in section 3 that our proposed combined classifier is a data-dependent partitioning
rule (disguised as a modified multinomial procedure), where the partitioning (random) is
induced by the individual classifiers, with the number of cells of the partition increasing

exponentially fast in M.

A closer look at (1) reveals that 1, can be written as

o) = argmaxgceer 1 S I = KY{da (W, W(x)) = 0}, 2)

i=1
where dg(u,v) is the Hamming distance between the vectors u and v (i.e., the number
of disagreements between the corresponding components of u and v). The condition
dy(W;, W (x)) = 0 appears to be too restrictive in (2) as it requires all the M classifiers to
agree at both X; and X. When M is large, this condition can alter the effectiveness of the
combined classifier 1, because the second indicator function in (2) will then become zero
quite frequently. Therefore 1,, cannot make good local decisions; this is particularly true in
the case of sparse data. In practice, it makes sense to modify the term I{d,(W;, W (x)) =
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0} in such a way that the summand in (2) has fewer zeros. One flexible criterion is to
allow a small number of disagreements between some of the components of the vectors WZ
and W (x). More specifically, let M’ < M be a positive integer and let Gngmi>™ " Gnmyps
be any M’ individual classifiers. Also, let W' and W*'(X) be the restrictions of W;
and W(X) to the set of classifiers (Gngmis> s Gnmyy ) 1€,

{ W;W = WM’ (XZ) = (gn,m1 (Xz)a o Onampp (XZ))
W (X) = (gn,m1 (X)> T Onman (X))

Similarly, let W”~*" and W*~'(X) be the (M — M')-dimensional vectors containing
the remaining M — M’ classifiers. Then our proposed modified version of (2) is
U (%) = P (G (%), 00, Gnu (X))
— argmaxgcexy O Y = K} A0 M, %) + foi, M, x) x f3(5, M,x)), (3)
i=1

where

Fi(i, M, x) = I{du(W,, W(x)) = 0},

fali, M, x) = H{du (W} W' (x)) = 0}, and

fali, M,x) = I{1 < (W}, W' (x)) < L},
for some small positive integer L < M'. In the case of ties 17" (x) picks the smallest
k € {0,--- K — 1} for which (3) holds. Here, L may be viewed as the tuning parameter
of the combined classifier ¢¥2*". In other words: 12" (x) = k, if the number of class k
data points for which all the M — M’ classifiers and at least (M’ — L) of the remaining
M’ classifiers predict (correctly or incorrectly) the same class, at both the data point and
the new observation, is larger than for any of the other classes. The combined classifier
(3) is in a sense a class-majority vote procedure, where the class with the largest number
of “yes” (=1) votes is elected. Here the voters are the X;’s and the vote associated with
X; is a 1 (i.e., a “yes”) if the condition f; + fo - f3 = 1 holds, and zero otherwise. An
interesting case is the one with L = 1. Larger values of L are suitable only when M (as
well as M’ and n) are somehow quite large. In fact, the major focus of this article is on
the case of L = 1. That is, we are allowing the components of W' and W*'(x) to have

at most one disagreement.

Observe that if we put f3(i, M,x) = I{0 < dg (WM, W™ (x)) < L}, then (3) can be

re-written as

Yp™(X) = argmaxocp<g ZI{YZ- = k}(fQ(z', M,x) x f3(i, M, x)),

=1
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where f5(i, M,x) is as before.

3. Asymptotic Performance of )}°".
In order to study the large sample behavior of 12", we first need to state some preliminary
results. For k=10,---, K — 1, let

P(W(X)) = E(I{Y =k} | W(X)),
and put

~

¢*(W(X)) = argmaxOSkSKflPk(W(x)), (4)
where as before W(X) = (gn1(X), -+, gnm(X)). Let P,(W(x)) be some data-based ver-

—~

sion of P,(W(x)). Observe that we have used the training sample T, twice in finding
P,(W(x)): once to find W(x) and a second time to find P, itself. Define 1, to be the
combined classifier

wn(W(x)) = argmaxogkgK—1ﬁk (W(X)) (5)
Let ¢ be any other combined classifier and define err, (), err,(1,), and err,(¢*), the
error rates of v, v,,, and ¥* respectively, by
err, () = PLO(W(X) £ | T,
erry () = P{¢n(W(X)) #Y | Ty}, and
err, () = P{y*(W (X)) £ Y | T,.}.
The following lemma shows that ¢*, as defined by (4), can be viewed as the counterpart

of the Bayes classifier for our combined classification setup; of course in the current setup
y* is also data-based (random).

Lemma. Let ¢* be as in (4).

(a) For any other combined classifier 1 one has

errn(w) - errn(w*) Za.s. 0.

(b) Let 1y, be as in (5), then

err, (1b,) — err, (¥°) <as. Z / | B(Wkx)-P{Y =k |X= x}| p1(dx),

where u is the probability measure of X.

Proof. A proof of this result for the two-class problem (K = 2) is given in Mojirsheibani
(1999b, Lemma 1); extension to the general K > 2 is straightforward and will not be

given here.
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In the rest of this article we will assume that the distribution of X has a compact support
B? C R Let
I, =0,(B%,Th, M) :={An1, -, Apgm}

be a random partition of B¢ induced by the training sample T,, where the KM cells of
the partition are defined as follows. Let uy, - - -, ugam be all of the different M—dimensional
vectors in the discrete space {0,1,--+, K — 1}, Then the ith cell of the partition is

= {X € Bd ‘ (gn,l(x)a" 'agn,M(X)) =u; u € {0: L- "aK - 1}M}

Observe that Ufﬁ Api = B¢ and A, iN A, ;=0 for i # j; thus II, is a genuine partition
of B?. Let A,[x] be the unique cell that contains the point x and let u,[x] be the vector
in {0,1,---, K — 1}™ corresponding to the cell A,[x]. Let T{* be the observed value of
the training set T,, and consider the nonrandom family of partitions Q,, of B¢:

n 7

Q, = {11 | 11 = I1,(B, T¢*, M), for T € {BYx {0,1,---,K —1}}"}.

Also, for any family of partitions 2 of B% let A(€2,n) be the nth shatter coefficient of 2,
i.e., the combinatorial quantity

A(Q,n) = max {# of different sets in {(A1 NV, Ay NV) | (A1, -+, Ay) € Q}},

where V = (vy,---,v,) with v; € B?. Finally, we also need the following notation. For
j=1,--, K —1, let

UYL (%) = (901(%)s - Ggn 1(X); [gnm(X) + 7] (mod K), Grms1(X)s- -, guse(x)), (6)

and let AY) (x) be the cell

n,m

AD (x) ={z € B | (gun(2),-- -, guuu(2)) = UYL (%) }. (7)

Remark A.

The cells Asf;)m(x), j=1,---,K—1and m =1,---, M may be viewed as the M (K — 1)
neighboring cells of A, [x], the cell containing the point x. They are the neighbors of A, [x]
in the sense that u,[x], the {0,1,---, K —1}-valued vector corresponding to the cell A, [x],
differs from UY), (x) in one position only. Note that for any cell 4, its M (K —1) neighbors

are completely determined according to (7) and (6).
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Our main results may be summarized as follows: If the number of individual classi-
fiers M = M, is allowed to increase with n (at a specified rate), then under some
regularity conditions the combined classifier {7 is at least as good as the best indi-
vidual classifier, where good means low misclassification error rate. More precisely, let
II; = II;(BY, Tn, M, — M),) = {A},,- "7A;,K<Mn—M;>} be a random partition of B¢
induced by the training sample T,, based on (M, — M]) individual classifiers only.
That is, A;;, the ith cell of the partition, is A%, = {x € B¢ | W= Mi(x) = v},
where the v;’s, ¢ = 1,---, K™~ are the distinct (M,, — M!)-dimensional vectors in
{0,1,-++, K — 1}*= -0 In what follows we assume that II, (and thus IT}) has con-
nected cells (a set S is disconnected if there are nonempty open sets A and B such that
S=AU B and AN B is empty, otherwise S is connected). Of course, one must impose the
extra condition that the marginal distribution of each component of the random vector
X has a density; without this condition, there is no hope of ever having a partition with
connected cells. An easy-to-visualize example of a random partition with connected cells
is the one where the individual classifiers are hyperplanes and K, the number of classes,

is 2.

Theorem. Consider the combined classifier (3). Let diam(S) = sup, yeq|[x — y|| be the
diameter of the set S. If all the marginal distributions of the vector X have densities, and
are jointly supported on a compact and connected set B¢ C R4, and if, as n — oo,

(a) M, — M] — oo,

(b) K?M=log A(Q2,,n)/n — 0,

(c) for every 6 > 0, u({x | diam(A;}[x]) > (5}) —a.s. 0,

(d) hg(x) :==P{Y =k | X =x) is continuous for each k =0,1,--- K — 1,

then the combined classifier 1Ype is asymptotically strongly optimal in the sense that for
any one of the individual classifiers g, one has

lim sup {err, (¢3™) — erry(ga)} <a.s. 0.

n—oo

Here, err,(g,) = P{g.(X) #Y | T,} and err, () = P{y,(W (X)) £ Y | T,}.

n

Remark B.
Condition (a) guarantees that the number of cells in IT} increases with n, and therefore
the cells will shrink. Condition (b) controls the richness or cardinality of the family €,,. It

also implies that K?"» /n — 0, i.e., the number of individual classifiers cannot grow faster
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than o(logn). Condition (c) is a shrinking cell condition; it requires the cells of II} to

have small diameters when n (and thus M)) is large enough. Condition (d) is technical.

Proof of the theorem.
We prove the theorem in three steps.

STEP 1. Equivalent representation of ™.

Let gnm,(X;), £ =1,---, M’ be the components of W' and let Gnm,(Xi), £ = M+
1,-++, M be the components of WY, Similarly, Gn,m,(X) is a component of W' (x)
for £ =1,---,M', and a component of WM_M'(X) for { = M'+1,---, M. Then a little
effort shows that

i

{da(W,, W(x)) = 0}

+ I{dy (W2 W (x)) = 0} x H{du (W2, W (x)) = 1}

= Hgum(X) = Gum(x); m=1,---,M}
+{gnm,(Xi) = gnm,(x); £=M"+1,--- M}

[T Gy (X0) = G (%); €= 2, M'} 01 {G s (X2) # Gms ()} }
FI{ Gy (X5) = Grmy ()5 €= 1,3, -, M} O {Grm(Xs) 7 Gms ()} }
i
(g (X0) = Gy (X); =1, M = 1301 {gnmry (K0) # Gnm (9} 1]

= Honm(Xi) = gam(x); m=1,---, M}
HF{{gn(Xi) = Gnm(x); all m0 # 11} N {Gm, (Xi) # G (%)}
HF{{gn(Xi) = um(x); all 1 # M5} N {Gm (Xi) # G (X))

+ e
FI{ {9m(X) = gum(x); all m £ 1} 0 {Gms (X3) # Gy (x)} }
=: Io+11+12+"'+IMI. (8)
Now observe that since x is in the unique cell A,[x] in which (g, 1(x), - -, gn,x(X)) = uy[x],

one has

I = I{(gn,1(X5), -+, gne(X5) = up[x]} = I{X; € Ap[x]}.
As for the terms Iy, -- -, I,/ in (8), note that for £ =1,---,a/,

{Grme (Xi) # Gngmy (%)} = U {gnmy(Xi) = [gnm, (%) + 4] (mod K) }
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Let the vector U(_],)n(x) and the cell AY) (x) be as in (6) and (7) respectively. Then, I;

can be written as

L = H{{gum(Xi) = g (x); all m # mu} 0 {Gam (Xi) # G (%)} }
= T U {0010+ 900(X0) = U, (001}

= { U 0xe a0}

K-1 ]
= I{X;e | Agg}m(x)}.

7j=1
Similarly, I, = I{X; € UK | J)ml( x)}, € =2,---,M'. Therefor the right hand side of

(8) becomes

M’ K-1
L+L+L++I, = {X;e Ax}+ Y HXie [J AY), (x)}
=1 j=1

M’ K—1
= I{Xi € An[x]U U U A,(fgnl (X)}, (since the cells are disjoint).

=1 j=1
Putting all the above together, our proposed combined classifier (3) can be re-written

according to
M K—1

Yp(x) = argmaXxo<p< g — 1ZI{Y = k}I{X € An[x]U U U AJ z )}

i=1 =1 j=1
L0 = (X € A UK U A, 00}
np( Anfx] DU, UK AGD, (%)) |
(since the denominator does not depend on k.)

= argmaXOSkSKil

STEP 2. Decomposition of err,(2™) — erry(gn)
Let ¢* be as in (4) and observe that

erry, (Yp™) — erry(gn) = e, (Y;™) — erry (Y7) + err, (¥*) — erry(gn)
<a.s. erry(¢Yn™) —err, (%) +0,

where the inequality follows upon replacing ¢ by g, in part (a) of the Lemma. It remains
to show that err, (¢n) — err, (¢*) —a.s. 0.
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STEP 3. err,(yre”) — err,(¢*) —a.s. 0.

By part (b) of the Lemma,

er, (Y5) — erta(y°) <as Z /B BT ) — he(o0)| ()

where hy(x) = P{Y =k | X =x}, and P,(W(x)) is as in (9), i.e.,

BT (x0) = m Y = RI{X € A,x] U UM, UK AD), (x) }
k np(Aulx] U UM, UK AT, (%)) '

Thus it is sufficient to show that [ga |Py(W(x)) — h(x)| p(dx) —a.s. 0, for each k. Let
¢ > 0 be given. Then by condition (d) of the theorem and the compactness of B¢, there
is a continuous function h¢: B? — R such that

sup |hg(x) — hS(x)| < € (Stone-Weierstrass.)

Put
E(h(X)I{X € 4,] ]uu UK AD, ()} | T )
h;(x) = K 1 G) ’
u(An[x] uuM, A, (x )
and
Pk(w_(x)):E(I{Y=k}I{XEA[x]uu UKt AD), }|T)

MMuuuKmmAD
Employing the arguments used in [4], first observe that

(x) — 5G| mtebe)

[ w0 = w60 |t

+ [ v = PUW o)t
“

2'g

PUW () — 9| plax) < [

PW(x)) = PUW () | ()
w+ Cn + D,

Clearly,

E. < sup |hk(x) — he(X)| <€, (because of the way h® was chosen.)
x€Bd
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Next, the term C,, can be bounded as follows. Put N = M'(K — 1). Then

1
C, < / sup -
B AnmyviAnmy € I M(An[x] U Up1 An,me)

x |E(hf(X)I{X € Alx| UEGI Anmy } | T0)

—E({Y = ;}I{X € A, [x]U J A, } | T)| (dx)
=1

= > / (the above integrand) u(dx)

A€Tl,
1
= wu(A) sup
A;n An mla'",An mpy € 109 I,I,(A U Ué\]:]_ An,m£>
() i) = [ () p(dx)
| /AUUZ 1 nml AUU[:I An,ml |
1
< wu(A) sup N he(x) — hi(x) | p(dx)
Aén An,mla"';An,mN € Il ,U,(A U Uévzl An,ml) AUU[:l An,ml | |
< Y uA)sup |Re) - he(x)]
A€, x€B4
< D u(A)-e
A€Tl,,

= €.

To deal with the term D, let v be the probability measure of the B? x {0, 1}-valued
random vector (X,I{Y = k}), and let v, be the corresponding empirical measure of
(X;, I{Y; =k}), i=1,---,n. Corresponding to each partition IT = {A;,---, Agm. } € Q,
define IT* by

" =10 x {0,1} = {41 x {0}, -, Ao x {0} } U{As x {1},--+, A x {1} }.

Associated with each €, define the family Q2 of partitions of B¢ x {0,1} by

o = {1y = {1 x {0,1} | men,}.

Then one has

Do = ¥ [ [B(W00) - AWeo)| e
> sup 4Gy

N
A€TL, AnmyysAnmy € ln IU(A U Uezl An,mz)
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x |n 1ZI{Y — B}I{X, € AU UAnme}

{=1

~B({y =} 1{X € AU U A, } | T0)

IS Y = X € AU Aum
<> e esnem{xeao U
~E({y =x}1{X € AU U Anmy } | T0)
=1
N N

.S sup v (AU U Anm) x {13) = (A0 U Aumy) x {13)]

A€ll, AnmyysAnmy € In =1 =1

N N

< s> swp v (AU U Anm) x {13) = (A0 U Anmy) x {13)]

HEDn At Animy s An,my € =1 =1

< sup 3 {funtax vt ]+ 2 a1 - st )}

e, AcIl

= sup { 3 w4 x (1) v x (1] + £ 3

MeQn = Actm Aell

— (KMn+1 Sup Z ynAX{l})—l/(AX{l})|

ey, Acll

(A x {1}) = v(ax 1} }

An application of Lugosi and Nobel’s [7] Vapnik-Chervonenkis-type inequality for the
partition families of the space B¢ x {0,1} yields (see Lemma 1 in the cited paper):

P(D,>¢ < P{ sup 3 [vn(d x (1)) = (it x an| > 5
D 2 2K
2
< 4A(Qy,,2n)2%K ".exp(—L).

128 K2Mn
Now condition (b) of the theorem together with the Borel-Cantelli lemma implies that
D,, —a.5. 0. As for the term B,,, put

M K1 1+(K—1)M’
SnA[J)\:J] VK — =A [X] U U U Anmg U Ai(x)7
=1 j=1 i=1

and observe that

B, < / (;)M(Sﬁfj\‘},,,()he(x)—E(I{XES;jf FREX) | To) |

(dx)

SA [x]

n.M', K

-/ m| Jyve HCtde) = [, hf(z)u(dz)wx)

MK n,M', K
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/Bd W /SA[X]I hf(x) — h'(z) |,u(dz),u(dx)

MK

1 1
< | D St e
B4 ,U,(Sn[]\}/ K) Ai(x)es:[;[]’,l{: (A; (x))£0 ILL(AZ (X))
< [ o 1160 = @)
(where A; is the closure of the cell A;)
71 - € €
=/, ) > (A7 (50 | (%) = Be(& )| (),
FA\Pnw 1) ai)estB o u(Aix)#£0
(where &;(x) is a point in A; (x) (the Mean Value theorem))
1
< - € _ KE i .
< ot e O rEm| T s
n,M', K

Alx]
A; (x)ES K

(since the distribution of X has a density)
(%) — h(&(0) | ().

= / maXx
Bd 1<j <M (K—1)+1

Let A € II,, and let A® 4§ =1,.-.. K —1,¢ =1,---,M' be the neighboring cells

T,my?

of A in the sense of (7) and (6); also see Remark A following equation (7). Also, let
Sa e = AUUML UK T AD)

) - The uniform continuity of A (on B?) implies that given

) < 0, then |hf(y1) — hf(y2)| < ¢ for all

€ > 0, there is a 0 > 0 such that if diam(S;, .
yi,¥2 € S,,?,M/,K. Thus

Bn S Z A ] H,laX
)

Aell,: diam(s4 LSjsm(x=1)+1
n-

(%) = h(&()) | ()

MK)

he(x) — (& (%)) | ()

+ z / max
. A 1<j<m'(Kk—1)+1
A€Tl,: dla,m(S;:‘M, K)<O

VAN

2 > u(4) + > € 1(A)

A€Il,: diam(s;‘,M,,K)za A€Tly,: diam(s;‘,M,, K)<6

(since A€ is bounded)

< 2u({x| diam(52%, ) > 6}) +e.

Let A[x] be the unique cell of IT} that contains the point x. A little effort shows that

S e C U A5 | nm(¥) = [gmmy (%) + ] (mod K), £=1,--, 01",

j1:1 Iy =1
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and gn,mz(y) = gn,me(X), (=M +1,-- -,M}
= Ar[x].

This implies that B,, < 2/1,({)( | diam(A[x]) > (5}) + €. Therefor, by part (c) of the
theorem, lim sup,,_, ., By, <a.s. €. This proves the theorem since we have shown that

limsup {E.+ B, + C, + D, } <as. 3¢,

n—o0

for all € > 0.
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