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Abstract
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1 Introduction

A cornerstone in the theory of continuous parameter processes is the Doob-Meyer decomposition
in which conditions are given ensuring a submartingale X = {X; : ¢ € [0,00)} can be uniquely
decomposed into the sum of a martingale and a predictable increasing process. When applied
to the square of a square-integrable martingale, the corresponding increasing process, termed the
predictable quadratic variation, plays an important role in the theory of stochastic integration and
martingale limit theorems. The Doob-Meyer decomposition has been extended by several authors
to processes indexed by the points of the plane or, more generally, the points of a directed set. A
consise history of such results can be found in the introduction of Dozzi et. al. (1994). In this paper
we obtain such a decomposition and study a form of quadratic variation for the class of set-indexed
strong submartingales, stochastic processes indexed by the elements of a subcollection A of closed
subsets of a fixed topological space T

This paper has five sections and one appendix. Section 2 begins with the necessary conditions
on T and the class A. The appropriate choice of indexing collection A, which replaces the usual
parameter spaces [0, 1] or [0, 1], is essential for the theory to work. Although our framework is
similar to that found in many earlier set-indexed papers, it is worth mentioning that nowhere do
we require A to satisfy the restrictive “shape property” and T is only required to be metrizable in
the latter part of Section 5. After defining set-indexed processes X = (X4)aca and set-indexed
filtrations (Fa)aca, adapted processes are defined to be those for which X 4 is F4-measurable V A €
A. This section also contains the definition and examples of set-indexed strong submartingales.

In Section 3, the Doob-Meyer decomposition for set-indexed strong submartingales is given.
After defining class (D')* strong submartingales—a set-indexed generalization of class I contin-
uous parameter submartingales—and formulating a set-indexed concept of predictability termed
*_predictability, the said decomposition is obtained in two phases. In the first, it is shown that
any class (D')* strong submartingale X can be uniquely decomposed into a sum X = M + V
where V' is a *-predictable process and M is a strong martingale “up to adaptedness” (Theorem
3.5). The proof, which is essentially that of Dozzi et. al. (1994), yields discrete approximations of
V in the weak Lj-sense. (Unlike its continuous pararmeter counterpart, a *-predictable process
is not necessarily adapted.) In the second phase, we show that under a generalized form of the
F4 conditional independence assumption of Cairoli and Walsh (1975), both M and V' are adapted
(Proposition 3.6).

In contrast to the classical situation, the square of a square-integrable set-indexed strong mar-
tingale M is not necessarily a strong submartingale. Hence, one cannot define the quadratic
variation of M to be the *-predictable process in the decomposition of M2. In Section 4, by fol-
lowing the ideas of Gushchin (1982), we circumvent this shortcoming to define a suitable form of
quadratic variation for set-indexed strong martingales termed *-predictable quadratic variation, a
*_predictable process which is not necessarily adapted. In Theorem 4.1, sufficient conditions for
the existence of *-predictable quadratic variation are given. In addition, under the generalized F4
conditional independence assumption, it is shown that any set-indexed strong martingale in Loy s,
some § > 0, has a unique, adapted *-predictable quadratic variation (Proposition 4.4). In both
cases, our results yeild discrete weak Li-approximants for the *-predictable quadratic variation. In
Section 5, conditions are given under which these approximations can upgraded to the Lo-norm
sense.,

The paper closes with an appendix containing consequences of the conditional independence



assumption found in Dozzi et. al. (1994). One such consequence, a set-indexed Rosenthal-type
inequality, is used extensively in Section 5.

2 Preliminaries

Central to the theory is the choice of an appropriate indexing class A. Similar to Slonowsky
and Ivanoff (1999), we take A to be a collection of closed subsets of a fixed compact Hausdorff
topological space T such that

(a) ¢.T € A,
(b) A is closed under countable intersections and
(c) if A, B € A are such that A, B # ¢, then AN B # ¢.

Modulo obvious modifications, the results obtained in the sequel will remain valid for 7" non-compact
provided there exists an increasing sequence (B,) of compact subsets of T such that B, € A Vn,
U, Brn =T and, given any A € A, A C B, for all sufficiently large n.

Three natural extensions of A are

A(u) = {all finite unions in A},
C = {A\B: A€ A,BecAlu)},
C(u) = {finite unions in C}.
C is a semi-algebra of subsets of T implying C(u) is the algebra generated by A. Clearly, A C C
and A(u) C C(u).
A constitutes a semilattice under A A B = AN B, hence we refer to any subcollection of A

which is closed under intersection as a sub-semilattice of .A. Given a finite sub-semilattice A’ of A
and an element A € A’, the left-neighborhood of A in A is the set C4 € C defined by

Ca = A\Uwew, aga A (1)

Since A’ is finite and closed under intersections, C4 = A\ Uarear, arca A’ for each A € A’

In addition to conditions (a), (b) and (c), we will assume throughout that A satisifies the
following two assumptions, variants of which have appeared in the earlier set-indexed martingale
literature (for example, cf. Dozzi et. al. (1994) and Ivanoff and Merzbach (1996)).

Assumption 2.1 (Separability.) There exists an increasing sequence (A,,) of finite sub-semilattices
of A and a sequence (g,) of functions of the form g, : A — A, such that given 4, A’ € A,

(A1) (ga(A)) is decreasing with [, gn(A) = A,
(A2) ACgn(A))°,

(A3) A C A’ implies A C gn(A)N A,

(A4) AU A" € A implies gn(AU A') = go(A) U gn(4') and
(A5) g

A5) g, preserves countable intersections (i.e., gn((Niq Ai) = N2y gn(Ai) for any (4;) in A).



Since A is closed under finite intersections, any C' € C can be written A\ i1 4; (4, 4; € A)
where A; € A; Vi # j and A; € A Vi. Such representations are termed minimal. On the other
hand, in general, the existence of maximal representations must be assumed.

Assumption 2.2 (Fuzistence of mazimal representations.) Given any C = A\ B € C (4 € A,
B € A(u)), there exists A1,---, A, € Awith A; € A; Vi # jsuch that C' = A\ UL, 4; and, given
any B’ € A(u), B NC = ¢ implies B’ C [ JiL4;.

When T = [0, 1]d for some d € N, examples of A satisfying Assumptions 2.1 and 2.2 include
the lower rectangles, {R, : z € [0, 1]?} where R, := [1%,]0, z], z € [0,1]%, and the collection £L4
of lower layers in [0,1]%. A closed set L C [0,1]¢ is a lower layer if z € L implies R, C L. Both
examples can be extended to the o-compact case of T' = Ri or T = R? (cf. Ivanoff and Merzbach
(1996)). Examples with T non-Fuclidean are given in Slonowsky and Ivanoff (1999).

Since A is closed under countable intersection and each A, is finite,

MNai = () Non(4i) €A

i€l neN el

for any subcollecton {A4; : i € I'} of A. In particular, ¢ € A where ¢/ = M aca, aze A The role
played by ¢ in the sequel will be similar to that of 0 in the continuous parameter theory. Without
loss of generality, we can assume that every sub-semilattice of A contains ¢’ and T" but not ¢.

The elements of a finite sub-semilattice A’ of A can always be numbered Ay, ---, A for some
k € N so that Ay = ¢’ and, given any 2 <i <k, A; C A; implies j < ¢ — 1. Following Ivanoff and
Merzbach (1996), we refer to any such numbering as being consistent with the strong past in which
case, given any 2 < <k, '

Ca, = A \ U;;% Aj . (2)

Fix a complete probability space (Q, F, P). An A-indexed filtration is any increasing family
(Fa) = {Fa: A € A} of complete sub-o-algebras of F which is right-continuous in the following
sense: Fn, A, = [, Fa, for any decreasing sequence (4,) in A. We can extend any such (Fa) to
an A(u)-indexed family by defining Fg =V 4c4 acp Fa for any B € A(u). Given a set C' € C(u),
the strong past at C' is then defined to be the sub-o-algebra

G =\ 7Fs (3)

B c A(uw)
BNC =g

for C' ¢ A(u) and G4 = Fy for C' € A(u). Since any finite sub-semilattice of A can be numbered
in a manner consistent with the strong past, (2) and (3) yield the following result.

Lemma 2.3 Given two distinct elements A and A’ of a finite sub-semilattice A" of A, either
Fa CGér or Far C G& where C and C' denote the left-neighborhoods of A and A’ in A" respectively.

Any collection X = {X4 : A € A} of random variables on (£, F, P) is referred to as a set-
indexed process. In this paper, we only work with processes X which possess unique finitely additive

extensions to C(u), i.e., Xcup = X¢ + Xp for any two disjoint sets C, D € C(u). Hence, given any
C = A\, A; where A, A; € Aand k €N,

Xe = 3 (-DMX(ANNe ). (4)



Examples of processes possessing such extensions include purely atomic processes and processes
indexed by a class A satisfying the so-called “shape property” (A C |JL; 4; with A, A; € A implies
A C A;). A necessary condition for such an extension is Xo = 0.

Given an A-indexed process X and 1 < p < oo, if X4 € L, VA € A wesay X isin L,. For the
case of p =1, such an X is said to be integrable. An integrable process X = {X4: A € A} is said
to be adapted to (Fa) if X4 is Fa-measurable VA € A. In the absense of a metric on T, we define
right-continuity for set-indexed processes as done in Dozzi et. al. (1994).

Definition 2.4 Let X = {X4: A € A} be a process on (Q, F, P).

(i) X is monotone outer-continuous if there is a set ' of full P-measure such that (A,)
decreasing in A implies X (An) — X (N, 4n) on Q.

(i) Given1 < p < oo, X is monotone Ly-outer-continuous if for any decreasing sequence (Ay,)

in A, X(An) = X(NnA4n) in Ly-norm.

(i) X s raw increasing if it is integrable, monotone outer-continuous and Xc > 0 a.s.
YC eC.

(iv) X is increasing (with respect to a filtration (Fa) on (Q,F, P)) if it is raw increasing and
adapted.

By a classic argument (cf. Dozzi et. al. (1994), Proposition 2.4),

Lemma 2.5 Let X = (Xa)aca and Y = (Ya)aca be two monotone ouler-continuous processes.
If X is a modification of Y in the sense that X4 = Ya a.s., any given A € A, then X and Y are
indistinguishable, i.e., for a.e. w, Xa(w) =Ya(w) VA € A.

Applying (A1) and (4),

Lemma 2.6 If X = (X4)aca is a monotone Ly-outer-continuous process, then given any C' =
ANUF A (A A € A), Bl Xene, [P) — 0 as n — oo when we take either C,, = A\ U gn(A))
Vn or Cn - gn(A) \ Uf:lgn(Ai) Vn.

The following terminology first appeared in Ivanoff and Merzbach (1995) and generalizes the
planar strong submartingales introduced by Cairoli and Walsh (1975).

Definition 2.7 An adapted integrable process X = {Xa : A € A} is a strong (sub)martingale if
E|Xc| G (=) =0 for every C € C.

Comments. (1) Since (G¢:)cec(w) is a decreasing family, if X is a strong (sub)martingale, the
tower property and the finite additivity of X imply E[X¢|G&|(>) =0 VC € C(u).

(2) Examples of strong martingales include processes with independent increments such as set-
indexed Gaussian processes and, when T = [0, 1]d for some d € N, the weighted empirical process
(cf. Slonowsky and Ivanoff (1999)). Clearly, any increasing process is a strong submartingale.

(3) In Dozzi et. al. (1994), two additional notions of submartingale were introduced. An adapted
integrable process X = (X4)aca was termed a set-indexved submartingale if F|Xp|Fa| > Xa for
every A C B whereas X was termed a set-indexed weak submartingale if E|Xc|Ge] >0 VC € C.



Here, G, the weak past at C' € C is the o-algebra Go = (ae 4, anczs FA-

In general, X adapted to (F4) does not necessarily imply that X is Gi-measurable for every
C € C. However,

Lemma 2.8 Fiz a finite sub-semilattice A’ of A and two distinct elements A and A" of A'. Let C
and C" denote the left-neighborhoods of A and A’ in A’ respectively.

(a) If X is adapted to (Fa), then either Xc is G{v-measurable or Xcv is G&-measurable.

(b) If X is a strong martingale in Lo and g € Lo is GENGrv-measurable, then Elg Xo X | =
0.

Proof. Without loss of generality, Lemma 2.3 implies F4 C G¢v so that (a) follows by (4).
Therefore, (b) follows by conditioning and the strong martingale property since El|g X¢ Xcv] =
E[g Xeo - E(Xcl|g*0/)] =0. 0

In Dozzi et. al. (1994), it was shown that any set-indexed martingale in L, is monotone L,-
outer-continuous. Since strong martingales are automatically set-indexed martingales, we have

Lemma 2.9 If X = (Xa)aca is a strong martingale in L, for some 1 < p < oo, then X is
monotone Ly-outer-continuous.

We refer to any finite collection {X;,H; : i = 1,---,r} of sub-o-algebras Hi,- -, H, of F and
random variables X1, -+, X, € L1 as a martingale difference arrayif H; C H;q V1 <i<r —1,
Xi is Hi-measurable V1 < i <7 and E[Xiy1|Hi] =0 V1 <i<r—1.

Lemma 2.10 Let M be a strong martingale and let A" = {Ay,- -+ A,} be any finite sub-semilattice
of A numbered in o manner consistent with the strong past. Then, given indices 1 < k1 < -+ <
kr <n with C; .= CAI@Z- # ¢ Vi, {Xi,H; 1 <i<r} forms a martingale difference array when we
take H; = VS Fay (1 <i<r 1), He = F and X; = M(C;) ¥1<i<r.

Proof. Since k; increases in 4, H; € Hiy1 Y1 < i <r—1. By (4), M(C};) is Fa, -measurable
V1 < ¢ < r. Therefore, since k; < kjy1 —1 V1 < ¢ <r—1,itis clear that X; is H; -measurable
V1 <i<r—1. (Trivially, X, is H, -measurable.)

Fix 1 < i <r —1. Since A’ is numbered in a manner consistent with the strong past, (2)
implies Ciy1 = Ag;yy \U;Efl)_lAj. If B= U;E{l)_l Aj, then Fp C G7,,,. Furthermore, since
(FB)BeA() is increasing, H; C Fp. Therefore, B[X;1|H;| = E[E[M(Ci11)|Ge,, | [Hi] = 0 when
we apply the tower property and the strong martingale property respectively. O

In view of Lemma 2.10, Burkholder’s inequality yields a set-indexed Burk- holder-type inequal-
ity.

Lemma 2.11 Let M be a strong martingale in Lo. If k1, -, k. and Cq,---,C, are as defined in
Lemma 2.10, then given any 1 < p < 0o,

E {(Zfl (Mci)Q)p/Q} < K- B[|Mcepl”] (5)

where Cy = | C; and K is a positive constant depending only on p.



3 A Doob-Meyer Decompositon

Fix a stochastic base, (0, F, P,(Fa),A). As done in the continuous parameter theory and the
theory of set-indexed weak submartingales (cf. Dozzi et. al. (1994)), we wish to determine a broad
class of strong submartingales X = (X 4)aec4 which can be uniquely written as

Xia=Vit My YAC A (6)

where M is a strong martingale and V' is an increasing process which is in some sense predictable.

In this section, after defining a suitable form of predictablility for set-indexed processes, we
obtain such a decomposition in two stages. First, we obtain (6) where V' is raw increasing and
E[Mc |Gt = 0 VC € C while M is not necessarily adapted. Then, sufficient conditions on A
and (Fa) are given under which M and V are adapted to (F4), resulting in a true Doob-Meyer
decomposition.

In the classical theory, given a filtration (Ft)scjo,00) on (2, F, P), one defines the predictable
o-algebra Y., on © X [0,00) to be that generated by all sets of the form F' x {0}, F' € Fp, along
with all sets of the form F' X (s,t| where s <t and F' € F,. By way of set-indexed analogue,

Definition 3.1 Any set of the form FxC (C €C, F € G& ) is said to be a *predictable rectangle.
The collection of all *-predictable rectangles is denoted Pg and the *-predictable o-algebra, P* on
Q x T is defined by P* = o(Pg).

In the continuous parameter setting, an adapted process X : € x [0,00) — R is termed pre-
dictable if it is 3J,-measurable. However, set-indexed processes have domain {2x.A and hence cannot
themselves be P*-measurable. Instead, we define *-predictablility in an indirect fasion following
that done in Dozzi et. al. (1994). This requires an additional assumption.

Assumption 3.2 For each F' € F, there exists a collection Y (F) = {Y(F,t) : t € T} of random
variables on (£2, F, P) such that

(i) the map (w,t) — Y (F,t)(w) is P *-measurable and
(i) for each t € T, Y (F,t) is a version of E|1p | H|

where Hy =V, Gty CF the left-neighbourhood of A} = (1 4ca, tea 4 in An. Moreover, the
process Y (F') is unique up to indistinguishability on T

As commented in Dozzi et. al. (1994), Assumption 3.2 replaces the theorem of predictable
projection of the classical theory and appears to be necessary for a Doob-Meyer decomposition of
set-indexed strong submartingales.

Given an integrable but not necessarily adapted process X = (X 4) e, the admissible function
associated to X is the function px defined by

ux(FxC) = E[lp Xc| YC €C, FeF. (7)

Clearly, a process X = (X 4)ae4 is raw increasing if and only if ux =0on {FxC:C €C, F € F}.
Furthermore, if X is adapted, it is a strong (sub)martingale if and only if pux (>) =0 on Pg.



Any admissible function is finitely additive on the semi-algebra Pg and therefore can be uniquely
extended to a finitely additive function on the algebra Pg(u) consisting of all finite disjoint unions
in Pg. Furthermore, by Proposition 4.1 in Dozzi et. al. (1994), the admissible function of a raw
increasing process necessarily extends to a unique measure on o(F x B(.A)) where B(.A) denotes
the o-algebra on T generated by the sets in A. This permits the following terminology.

Definition 3.3 A raw increasing process V.= (Va)aca is said to be *-predictable if for any ' € F
and any C' € C,
pr(FxC) = [ Y(ROW) duv(w.) (8)
axC

Comments. (a) Our definition of *-predictability is motivated by Definition 4.1 of Dozzi et. al.
(1994) in which a type of set-indexed predictability suited for weak submartingale decompositions
was defined. In contrast, our definition does not require *-predictable processes to be adapted

(b) In the classic situation where 7" = [0,00) and A = {[0,t] : t > 0}, if V' = (Vi)scpo,00) 18
adapted, then condition (8) is equivalent to V' being equal to its dual predictable projection.

Definition 3.4 A process X = (X a)aca is of class (D')* if

I3 [BED| Gl n e N}

is uniformly integrable where

No={Ca: A A3\ {6}
denotes the collection of all non-empty disjoint left-neighborhoods generated by A,.

Comment. Our definition of class (I)')* processes is intended to mimic the class D' processes
from the continuous parameter theory. A similar class of set-indexed process was introduced in
Dozzi et. al. (1994) except with the strong past G& replaced by the weak past Ge.

In Theorem 5.1 of Dozzi et. al. (1994), it has been shown that any monotone L;-right-continuous
weak submartingale X satisfying a close analogue of the class (D')* property possesses a unique
decomposition X = M +V where M is a weak martingale and V' is an increasing process possessing
a form of predictability similar to that found in Definition 3.3. With some minor modifications, by
replacing “weak past” and “weak submartingale” by “strong past” and “strong submartingale” in
the proof thereof, we obtain

Theorem 3.5 Under Assumptions 2.1, 2.2 and 3.2, given a monotone L1-right-continuous strong
submartingale X of class (D')*, there exists processes M and V', both unique up to indistinguish-
ablity, such that

(a) Xa=Va+ My VAEA
(b) V is *predictable and
(c) ElMc|Ge)=0VvVC el



(M and V' are not necessarily adapted). Moreover, given any A € A,

Va = iMoo My oo, n>m Vg%) in the weak L1 topology (9)

where, given anyn > m and B € A,,, V]én) is the random variable V];n) =Y pen,.ncB Ll Xp |Gl

In Dozzi et. al. (1994), adaptedness of the increasing process V' in the Doob-Meyer decomposition
for set-indexed weak submartingales followed automatically from (9), (4) and the inclusion G C
Fa, C = A\ B (A €A B € A(u)). Whereas the inclusion G& C Fyu is not valid in general, we
have the following

Proposition 3.6 Under (32) and Assumptions 2.1, 3.2, A.5, A.6 and A.7, the processes V and
M in Theorem 3.5 are both adapted to (Fa).

Proof. Given a sub-o-algebra G of F, let L1(G) denote the space of all G-measurable random
variables in L. Fix A € A. Since our filtration is right-continuous and subspaces of the form L;(G)
are closed in the weak I; topology, it is sufficient by (9) to show Vg(rzz A € Li(Fy,.(ay) for every
n,m € N such that n > m.

To this end, fix a pair n > m and select D € N, such that D C g,,(A). Since D = A"\
Uarea,, argan A" for some A" € Ay, it must be that A" C g,,(A). Therefore, since (4) implies Xp

is Fas-measurable, the F, (4)-measurablility of Vqﬂ:g A) follows by Corollary A.10 and the inclusion
Fa € Py B

4 The Existence of Quadratic Variation

In the continuous parameter theory, since the square of an Lo martingale M = (Mt)te[o,oo) is a
class D submartingale, one defines the predictable quadratic variation (M) of M to be the unique
increasing process for which M?— (M) is a martingale. In contrast, the square of a strong martingale
M in Lo need not be a strong submartingale (cf. Gushchin (1982)). Furthermore, in view of (4),
E[MZ|GE] is not necessarily non-negative for every C' € C. For these reasons, we follow the lead
of Gushchin (1982) and work with the collection of {(Mc)? : C' € C} of squared increments rather
that the collection {M2 : C' € C} of increments of the square. In this way, we obtain the following,

Theorem 4.1 Under Assumptions 2.1, 2.2 and 3.2, if M is a strong martingale in Lo for which

{3 pen EL(Mp)?1Gp] - n e N} (10)

is uniformly integrable, then there exists a *-predictable process Q, unique up to indistinguishability,
for which
E[(Mc)*Ge] = ElQelGe] YO ec (11)

(Q is not necessarily adapted). Moreover,

Qa = iMoo iMoo n>m Q;:l)(A) in the weak L1 topology (12)
where, given anyn > m and B € Ay, Qg) is the random variable given by Qg) =3 pen,.pcs El(Mp)*| ).

9



Comments. (1) The process @ in the preceding theorem represents a form of predictable
quadratic variation for the set-indexed strong martingale M. However, it is important to note
that, unlike the continuous parameter setting, M2 —Q is not necessarily a strong martingale. First,
as mentioned above, @ is not necessarily adapted. Secondly, even if @ is adapted, (11) does not
necessarily imply E[(M? — Q)c|G&] = 0 VC € C. Such difficulties are unavoidable, even for the
case of two-parameter strong martingales (cf. Gushchin (1982)).

(2) Since M2 does not coincide with (Mc)? in general, (10) is not necessarily equivalent to M?
being of class (D')*.

Define ppry2 + P — [0,00) by setting pyap2(F x C) = E[1p (Mc)?] for any F' x C' € Py
(Note that (a2 is not necessarily the admissible function of the process M 2) The key step in
the proof of Theorem 4.1 is the following,

Proposition 4.2 Under Assumptions 2.1 and 2.2, if M is a strong martingale for which the family
in (10) is uniformly integrable, then a2 extends to a unique measure on P*.

Proof. Assuming pi(ppy2 is finitely additive on Py, the existence of such an extension follows
by an argument identical to that of Theorem 3.1(iii) in Dozzi et. al. (1994). In particular, the
uniform integrability of (10) plays the role of their class I’ condition while the monontone Lo-
outer-continuity of M (guaranteed by Lemma 2.9) replaces Li-right-continuity. However, unlike
the case for admissible functions, the finite additivity of i(pr)2 on Py is no longer trivial since
C — (Mc)* (C € C(u)) is not necessarily finitely additive on C(u). Instead, taking disjoint sets
Fy xCh,- - F, x Cy in P§ such that [JL) F; X C; = F' x C € Py, we argue by cases as done in
Gushchin (1982).

First, consider the case in which ' = 7 = --- = F,. Since F' x C = [ F; x C; =
Fox (UCh), € = UiL1Ci a disjoint union, the finite additivity of M implies pap2(f" x C) =
B[1p (S Mc,)?|. In fact, fary(F x C) = E[lp S iL1(Me,)?] since

Claim: E[1p Mc; Mc;] =0 Vi # j.

Proof: To simplify notation, take i — 1 and 7 — 2. Clearly, there exists a finite sub-semilattice A’ of
A and disjoint left-neighborhoods Dy, - -+, D,, generated by elements in A" such that C7 = J*, D;
and Cy = Uj—p,,1Dj. Since I € G and (GH)pec is decreasing, 15 is Gh, -measurable V1 < k < 7.
Therefore, by Lemma 2.8(b), E[1p Mp, Mp,] = 0 V1 < i <mand m +1 < j < r so that
E[1p M¢, Mc,] = 0 follows by the finite additivity of M.

Next, consider the case in which any two of the C; are either disjoint or equal. If we let
Ay, -, Ag denote all distinct (hence disjoint) sets among the €, then since F' x C' = iy F; x C;,
it is clear that ' = ;. ¢,—a, Fi is a disjoint union V1 < j < k. This implies

n k k
S nae(FxC) = Y Y Blte (Ma)) = Y Elte (Ma,)?

i=1 J=1 i:Cy=A; Jj=1

so that finite additivity in this case follows by the previous case.
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Finally, let F' x C' = [Ji; F; x C; be any disjoint union in P;. Then, as in the above claim,
there is a finite sub-semilattice A’ of A such that for each 1 < i < n, ther@ exists disjoint left-
neighborhoods D{, - - - 7Dkl;(i) generated by elements in A" such that C; = | ,ng,z Since (G)pec
is a decreasing family, F; X D,f; € Py for every i and k. Therefore, since F'x C' = [ i, Uig F; x D,j;
and the D} are either disjoint or equal, ux(F x C') =31, ZIZ(;)I px(Fy x DEY =570 ux (F; x Cy)
when we apply the second and first cases respectively. This completes the proof of finite additivity
of piaryz on Py. O

Proof of Theorem 4.1. Since the proof is close to that of Theorem 5.1 in Dozzi et. al. (1994), we
provide only a sketch and refer the reader to the said paper for details. We begin by constructing a
process @ is such a way that (12) is satisfied. Take m € N and select A € A,,. Given any F € F,
if we define oa(F) = Jo, 4 Y (I") dpyary> where Y is the T-indexed process in Assumption 3.2, it
can be shown that

oa(F) = lim Bl1r QY.
n>m
Therefore, by the Hahn-Vitali-Saks Theorem, there exists a random variable Q4 € L such that
oA(F) = E[1p Q4 VF € F,ie., (Q%))an converges to @ 4 in the weak L; topology.

Applying the above argument to each A € A* =, A, we obtain a collection {@Q4 : A € A*}

of random variables which generates an A-indexed process ¢ when we set
Qalw) = Inf Qu(w) = lim@,, 1w)

Al € A*
AC A

for any A € A and w € Q. Furthermore, since the above limit is monotone in m, ¢ is monontone
outer-continuous and convergence is in the weak I; topology. Following Dozzi et. al. (1994), since
M is monotone Ls-outer-continuous (cf. Lemma 2.9) it is straightforward to show that Q¢ > 0
VC eC. Thatis, @ = (Q4)AcA is raw increasing.

To establish *-predictablility for @, note that given C' = A\ Ule A;, if for each m we define
C™ = grm(A)\ UL | gm(As), then given any F' € F, dominated convergence and the monotone
outer-continuity of ¢} imply

E[lpQc] = lim E[lr Qem]

= lim Y (F)dparye
moJaxcm

= [ Yy
Therefore, it is sufficient to show 1i(pr)2 = g on P* which is in fact equivalent to showing
pany2 (B x C) = po(F' x C) VFxCePy (13)
since Py is a w-system which generates P*. (13) clearly implies (11).

Fix FxC € Pg. If C = A\|J¥ ;| B; is a maximal representation of C, then given any B € A(u)
such that BNC = ¢, B C UF 1 B; € UE gm(B;) ¥m so that BNC™ = ¢ ¥m. Therefore,

1



F e Gy CGim Vm. Since M is monotone Lg-outer-continuous, this implies

Bltr (Mo)?] = Jim_ E[lp (Mom)?] = T lim  B[1p Q0]
n>m

= lim E[1pQcn] = E[1r Qc]
which establishes (13).
The argument for uniqueness of () is identical to that found in the proof of Theorem 4.1 in
Dozzi et. al. (1994). O

Theorem 4.1 motivates the following terminology.

Definition 4.3 Given a strong martingale M = (Ma)aca in La, a process Q@ = (Qa)aca is
termed a *-predictable quadratic variation of M if Q is *-predictable and E[(Mc)*|Gé] = ElQc |G|
vC ecC.

Comments. (1) By a straightforward argument, the conditioning relation in Definition 4.3
extends to all C' € C(u).

(2) As a consequence of *-predictablility, a *-predictable quadratic variation is unique if it ex-
ists. Once again, the proof is identical to that found in Theorem 4.1 of Dozzi et. al. (1994).

We close the section with a simple moment condition under which a strong martingale possesses
an adapted *-predictable quadratic variation.

Proposition 4.4 Under (32) and Assumptions 2.1, 3.2, A.5, A.6 and A.7, if M is a strong mar-
tingale in Loygs for some 6 > 0, then M possesses a unique *-predictable quadratic variation Q
which is adapted to (Fa).

Proof. By Lemma A.11, the Ly,s/-norm of any element in (10) is bounded above by ( -
E[|Mr|*10])2/(+9) < o0, k some positive constant depending only on 8. Therefore, by Theorem
4.1, M possesses a *-predictable quadratic variation ). Adaptedness of @) follows by the argument
for adaptedness of V' in Proposition 3.6. O

5 Lo-Approximations of Quadratic Variation

Let M = (Ma)aca be a strong martingale in L4 so that under the conditions in Proposition 4.4,
M possesses a unique *-predictable quadratic variation @ = (Q4)ac4. In this section, assuming
that the underlying compact space T is metrizable, it will be shown that the quadratic variation
(@ is “calculable” whenever M has sample paths which are continuous in a certain sense. That is,
(@4 can be approximated in Lo-norm by discrete sums of the form

QW = ZN E[(Mp)*|Gh) .

D
D

(This improves the weak Lj-approximations in Theorem 4.1.) We begin with a useful Ls-norm
inequality.

12



Proposition 5.1 Under (32) and Assumptions 2.1, 3.2, A.5, A.6 and A.7, if M is a strong mar-
tingale in Ly, then for any k € N and A € Ay,

2
% =] = ¢rran + o an (14)
for every n,m > k where, for each v € N,

a = E{gjnajg (Mc)ﬂ (15)

T

and Cq, Cy are positive constants depending only on E[M%]

(77),
Proof. Take k, m,n € N such that m,n > k. Without loss of generality, we may assume n < m
so that, given any C' € A, the inclusion A, C A,, implies

Bl(MeP|Ge] = X Y BlMp, Mp,|G]. (16)
D1 € Nyw Dz € N

Furthermore, by Lemma 2.8(a), given any Di # Dy in N,,, we may assume without loss of
generality that Mp, is G 52 -measurable. Therefore, since G& C Gf for all D € N, with D C C,
a simple conditioning argument applied to (16) yields

E[ (M) 6¢] = 3 BI(Mp)*|Gé] (17)

by the strong martingale property of M.
Now, select A € Ag. Applying (17) to each C' € N, for which C' C A,

QY - = 3 3 El(Mp)’1GE) — Y E[(Mp)?| G5 (18)
CENn DENm D € Nim

For each D € N, and C € N, define
A5 = E[(Mp)*|GE] — E[(Mp)?|Gp). (19)

Since A, C A,,, the definition of left-neighborhood implies

D e Ny, CEN, DEN,
DCA CCA DCC
so that (18) becomes
(n) (m) (©)
Q' — QY = > dp
CENp DENRp
CCA DCC

13



Therefore,

C C

C1,C2 €Ny Di1,D3 € Ny
C1,Co C A D; CC;
C1 # Ca

Employing this expansion, we will obtain the upper bound in (14) in three steps. In the first step,
we dispose of the last sum in (20).

Step 1. Given C1,Coy € Ny, such that Cy # Co and Dy, Do € Ny, for which D; € C; (i = 1,2),
Eld5™ - d5? =0,

Select such sets C, C'2, D1 and Ds. By (19),
i -af® = Bl(Mp,)? |G, Bl (Mp,)? 162,
— E[(Mp,)*|G&, ] E[(Mp,)* | Gh,]
— E[(Mp,)*|Gh,]- E[(Mp,)* | G&,]
+ E[(Mp,)*|Gn,] E[(Mp,)?|Gh,]- (21)

Assume C; is the left-neighborhood generated by A4; € A, (i = 1,2) and likewise, assume D; is
the left-neighborhood generated by B; € A, (i = 1,2). By Lemma 2.3, we can assume without loss
of generality that Fa, C G¢,. Moreover, Dy C C implies By C Az, (Otherwise D1 = D1NCy = ¢,
a contradiction.) Therefore, since (Fa)aca is increasing and (G&)cece is decreasing,

F, € Fay, € Gy, € G, (22)

Furthermore, since Dy is the left-neighborhood of By, (4) implies (Mp, )? is Fp, -measurable. There-
fore, since Fp, C F4,, Corollary A.10 implies

E[(Mp,)?|Gé, | is Fa,-measurable. (23)

In general, given sub-o-algebras H; and Hs of F and random variables X,Y &€ Lo such that X
is H;-measurable (i = 1,2), conditioning yields E| X - E(Y | H1)| = E| X - E(Y | H2)|. Therefore,
if we take Hy = G¢&,, Ho = Gh,, X = E[(Mp,)?|G&,| and Y = (Mp,)?, then (22) and (23) imply

B{ E[(Mp,|GZ,] - E[(Mp,)*| G5, |
= B{ B[(Mp,)’|G&,) - El(Mp,)*|Gh, ] |
and by an identical argument,
B{E[(Mp,)?|Gh,|- B[ (Mp,)?|G%,) }
= B{ E[(Mp,)*|Gb,] - E[(Mp,)*| Gb, | }

14



In view of (21), this completes the proof of Step 1.
establishing Step 1.

Step 2: There exists a positive constant Co depending only on E[M3] such that

S>> Bldy)-dy)] < Gan.

C €Ny Di1,D3 € N
CCA Di,DyCC
Dy # Dgy

Fix a set C' € N, for which C' C A and let Dy, Dy € N, be such that Dy, Dy C C' and Dy # Ds.
Since G € G5, (i = 1,2), we obtain

B { Bl(Mp,)*| G- Bl (Mp,)* | G5, }
= B{ E[(Mp,)*|G2] E[(Mp,| G2 }

when we condition with respect to G¢& and then apply the tower property.
Now, consider (21) with C; = C5 = €. Since all four products in (21) are non-negative, the
previous identity implies

Edp)-dp) ]| < B{E[(Mp,)*| Gp,]- Bl (Mp,)*| G, 1}

Therefore,

> E[df)-df)] < B B[ (Mp)?| Gb]
Di,Dy € Ny D e N
s vee

14
< FG'E{ [M(UDeNm,DQCD)_ }
= k- B[ (Mo)']

where k is the universal constant in Lemma A.11. Furthermore, by Holder’s inequality,

PE 0 = of o] [oer))
VB Tsup (M) V B{ [ X ]} (24)

where all sums and supremums range over the sets C' € A/,,. Since Lemma 2.11 implies

B[S o o'} < o0 )

IA

for some universal constant x’ > 0, Step 2 is completed by taking Co = k- &’ - / E[M3].
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Step 3: There exists a positive constant Cy depending only on E[M3#] such that

SO E{(d}f)ﬂ < o

CENn DENg,
CCA DCC

Given any C' € N, with C' C A and any D € N, with D C C,
2 2
B\ (45| = B{(Bl0m07 160 - Bl 5] )}
E(E[(Mp)*|G2]”) + B (E[(Mp)*|Gh]”)
2-F [(Mp)ﬂ (by Jensen’s inequality).

IA

IA

(The second to last line follows from the deterministic inequality (a —b)? < a® +b* where a,b > 0.)

Therefore,
% E{(d}f)ﬂ < 2-Y B[(Mp)!] (26)

DeNm

m
>3

of Np. O

The following assumption on A will be required in the sequel.

Assumption 5.2 There exists a universal constant K such that, given any n € N and 4 € A,,
there is a subcollection {41, -+, Ax} € A, with k£ < K such that

(1) Ur A=A € A, : A C A),
(i) ¢ # 7 implies A; € A; and
(iii) if A" € A, is such that A’ C A, then there exists 1 < j < k such that A’ C A;.

(Clearly, the set A\ UleAi € Cy, i1s a minimal representation of the left-neighborhood generated
by A in A,.)

Examples satisfying Assumption 5.2 include the lower rectangles and the lower layers in [0, 1]¢.
In both, we can take K = d.

Lemma 5.3 Define A* = J,, A, and let M be an A-indexed strong martingale for which sup g4c 4« M4 €

LA, Under Assumption 5.2 and those in Proposition 5.1, if max cen, |Mc| —p 0 asn — oo, then
the sequence (on,) defined in (15) converges to zero.

Proof. By the dominated convergence theorem, it is sufficient to show that, for each n,
max ce n, |Mc| < B+ (supgea- Mj‘l) for some universal constant 8 > 0. To this end, fix n € N.
Given C' € N, there exists A € A, such that C is the left-neighborhood generated by A in A,. If
A\ UF_,A; is the minimal representation of C' described in Assumption 5.2 then by (4),

(M| < 30 IM(ANN A < 2% (suppea- M)
Ig{lz"'rk}
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so that the lemma follows by taking 8 = 24K, O

Combining Lemma 5.3 and Proposition 5.1,

Corollary 5.4 If M is as described in Lemma 5.3, then under (32) and Assumptions 2.1, 3.2, 5.2,
A.5, A.6 and A.7, {Q;:l)(A) :n >m} is Cauchy in Lo for any fited m € N and A € A.

Now, assume T is metrized by a metric d. As done in various papers (for example, cf. Tvanoff
and Merzbach (1996)), we define the Hausdorff metric between any two closed sets, A, B € A by
dg(A,B) = inf{fe >0: A C B and B C A°} where A° = {x € T : d(x,A) < €¢}. A process
X = (Xa)aca will be termed sample path continuous if, on some event of full P-measure, all
sample paths A — X4 are dy-continuous on A.

In order to apply Corollary 5.4 to obtain Le-norm approximations of the *-predictable quadratic
variation of a sample path continuous strong martingale, it is necessary that max ce n;, | Xc| —p 0
for sample path continuous processes X. For this, we need the following assumption which we
conjecture is a consequence of the compactness of 7. In any case, it is satisfied by all known
examples.

Assumption 5.5 (Uniform Approzimations.) There exists a sequence (¢&,) of positive constants
with €, | 0 such that, given any n, dg(A, g.(A4)) < €, for every A € A.

Comment. Tt has been shown in Slonowsky (1998) that any class A satisfying Assumptions 2.1
and 5.5 is compact with respect to the Hausdorff metric.

Under Assumptions 5.2 and 5.5,

Lemma 5.6 Givenn and A € A, if {A1,---, A} is a subcollection of A,, satisfying the conditions
of Assumption 5.2, then du(Ner AisNjes A5) < 2¢€n for any I,J C {1,---, k} where (¢,) is as
defined in Assumption 5.5 and, by convention, we define ()4 Ai = A.

Proof. First, note that A C g,(A;) for every 1 < ¢ < k. Indeed, if A Z g,(4;,) for some
1 <ip <k, then g,(4;,) N A C A. In addition, by (A3) of Assumption 2.1, A;, C A implies
Aiy C gn(Aip) N A If we define A" = g,(Ai) N A € A, then, since A" C A, condition (iii) of
Assumption 5.2 implies A" C A;; for some 1 < jo < k so that A;, C A}y, contradicting condition
(i) of Assumption 5.2.

Next, take I C {1,---,k}. Since g, preserves finite intersections,

A C gn(MicrAi) © (Nier A

when we apply the above observation and Assumption 5.5 in that order. Since [);c; A; € A, this
implies dr (A, Nier Ai) < €, so that the present lemma follows by the triangle inequality. O

Lemma 5.7 If X = (X4)aca is a sample path continuous process, then under Assumptions 5.2
and 5.5, max ce n, | Xco|—p 0.

17



Proof. Given a dg-continuous set-function x : A — R, define the modulus of continuity, w(zx,€)
of x (¢ > 0) by w(z,€) = sup{|z(A) —x(B)| : du(A,B) <€, A, B € A}. Since (A, dy) is compact,
x is uniformly dp-continuous on A so that lim o w(x,¢) = 0. In particular, lim o w(X,e) =0
a.e.

Now, fix n € N and select C' € A, the left-neighborhood of a set A € A,. Let A\ ¥, 4; be
the minimal representation of C' described in Assumption 5.2. If we define

E={UC{l, - k}:|[I|iseven} and O = {I C{1,---k}:|I]isodd},

then by the binomial theorem, there is a bijection f : & — O. Clearly, |£| < 2% where K is the
universal constant defined in Assumption 5.2. Therefore, by Lemma 5.6,

Xol < 3 [X(ANNierA) = X(ANNjepnA)| < 25w (X, 26) .
Ie&

Taking the maximum over all C' € A, and then letting n — oo, the proof is complete. O

The main result of the section is the following;:

Theorem 5.8 Let M be a strong martingale for which sup 4e 4» M4 € Ly. Under (32) and As-
sumptions 2.1, 3.2, 5.2, 6.5, A.5, A.6 and A.7, if M is sample path continuous, then for every

Ae A,
QRa = lim oo M poo, n>m Q;:z)(A) in Lo (27)

where Q is the unique *-predictable quadratic variation of M and Q;:l)(A) = 2 DEN, DCgm(A) E|(Mp)?|Gp].

Proof. Fix A € A. By Proposition 4.4 and Theorem 4.1,

1%11@%(,4) = Q4 in the weak [ topology (28)
where for every m € N,
@gm(A) = li;Ln Q;:l)(A) in the weak I topology . (29)

By the completeness of Lo and Corollary 5.4, the convergence in (29) is also in Le-norm. To
establish Lo-norm convergence in (28), it is sufficient to show (Q,,.(4))m is Cauchy in L.
Toward this goal, note that

[ @5ty — @], < 7 [Mawa - Mgmm)Hj (30)

for any k,m,n € N with k,m < n where ~ is a positive constant depending only on F [MZ].
Indeed, assuming k < m, since gr(A), gn(A) € A, and gn(A) C gr(A),

Uty ~ Uiy — C;VHE[(MCV'%} - C;VHE[(MC)QW*C}
C Cgr(A) C C gm(4)
= Y B|(Mc)|g]

C e Nn
C Cgp(A)\ gm(A)
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so that Lemma A.11 implies the existence of a positive constant x depending only on F [M%] such
that

IA

n n 2
|y — @ w[, = meIM(UIC €Ca: € C gD\ gm(ODIl}
4
= K- HMgk<A)\gm<A)H4-
Now, to show that (@gm(A))m is Cauchy in Lo, fix ¢ > 0. Given any k,m,n € N,

Qo= Quuinll, = @i = @it ], + @t~ o, +

(n) ral
|5~ o], (31
Since M is sample path continuous, M, (1) — Ma in Ly by dominated convergence. Therefore, by
(30), there is an L such that ||Q;ZEA) - Q;:l)(A)HQ < ¢/3 whenever n > k,m and k,m > L. Moreover,

given any pair k,m > L, since the convergence in (29) was shown to be in La-norm, both of the
remaining summands in (31) can be made less than ¢/3 by chosing such an n sufficiently large.
This completes the proof. O

A Consequences of Conditional Independence
In this section, under the conditional independence assumption:
E|E(X|Fa)|Fs| = E[X|Fans] VA, Be A, X €Iy (32)

we will establish, among other things, a set-indexed generalization of Rosenthal’s square function
inequality. (32) has appeared earlier in Dozzi et. al. (1994) and reduces to the classic F4 property
of Cairoli and Walsh (1975) when A is the collection of lower rectangles in [0, 1], In general, any
filtration generated by a process X = (X4)aca with independent increments (e.g., an A-indexed
Gaussian process) will satisfy (32). Under (32),

et Fa;, = :Fﬂ?zlAi (33)

for any Ay,---, A, € A (cf. Dozzi et. al. (1994), Lemma 2.3).

Another form of conditional independence appearing in the literature states that sub-o-algebras
F1 and Fo of F are conditionally independent of a third sub-o-algebra Fs if, given F;-measurable
random variables X;, ¢ = 1,2,

E|X1 X2 | Fs| = E|X1| Fs]- E|X2| Fsl. (34)

In such a case, we write “F1 L Fo given F3”. Clearly, it is sufficient to test (34) for the case in
which X; = 15, F; € F; (i = 1,2). The relation between (32) and (34) is as follows.

Lemma A.1 Under (32), for any A1, As € A, Fa, L Fa, given Fa,na,.
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Proof. Taking X; = 1, F; € Fa, (i = 1,2), (32) implies

E[X1X2|:FA10A2] - E[E(X1X2|FA1)|FA2] - E[XlE(X2|FA1)|FA2]'

Furthermore, since I; € Fy,, (32) implies X1 | Fa,| = E|X1 | Fayna,] and B[ Xo| Fa,| = E[X2| Fayna,]

so that

E[XlE(X2|FA1)|FA2] - E[X2|FA10A2]'E[X1|FA2]
- E[X2|FA10A2]'E[X1|FA10A2]

which completes the proof. O

The following characterization of conditional independence can be found on p.36-11 of Dellacherie
Meyer (1978).

Lemma A.2 If Fi, Fo and Fs3 are sub-o-algebras of F, then F1 L Fo given Fs if and only if
E|X | F3| = E|X | F1V Fs| for all Fa-measurable X € L.

We will make repeated use of the following technical results.

Lemma A.3 Let F1,Fo,F3,G,G1 and Go be sub-c-algebras of F.

(a) If F1 L Fo given Fa, then Fo L F1 given Fs. If, in addition, G; C F; (i = 1,2), then
G1 L Go given Fs.

(b) If.lFl 1 FQ gz’ven Fg, then (Fl \/Fg) 1 (FQ \/Fg) gz’ven Fg. If, m addz’tz’on, g C Fl\/FQ,
then F1 L Fo given F3V G.

Proof. (a) follows by definition whereas (b) is a special case of Lemma 2.2 in Carnal and Walsh
(1991). D

Lemma A.4 Let Fi,Fo,G and 'H be sub-c-algebras of F. If F1 L Fo given H and G C Fo, then
(F1VG) L Fy given HV G.

Proof. Since G C F1V Fa and F1 L Fy given H, Lemma A.3 (b) implies F1 L Fa given HV G
and thus (F1 VHVG) L (Fo VHVG) given HV G. Therefore, by Lemma A.3(a), (F1VG) L Fo
given HV G. O

In the sequel, we will require three assumptions apart from (32). The first concerns A and is
satisfied by all examples we have in mind.

Assumption A.5 There exists a binary operation V on A such that A is a distributive lattice
under V and A =N,

Assumption A.6 If A C L, A;i (A4, A4; € A), then Fy C VL, Fa,.
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Trivially, if A = ;- 4i, 4; € A, Assumption A.6 implies Fa = Vi Fa,. If A satisfies the
shape property, then any A-indexed filtration automatically satisfies Assumption A.6. Moreover,
for any process X = (X4)aca, the family (Ha)aca where Ha = o({Xp: B€ A, B C A}) can be
easily shown to satisfy Assumption A.6.

Our final supplimentary assumption complements Assumption 2.2. Fxamples for which it is
satisfied include both the lower rectangles and the lower layers in [0, 1]2.

Assumption A.7 Given any C' = A\ UL;4; € C (A, A; € A), there exists a maximal represen-
tation A\ Ui, B; of C such that BiNB; C A Vi # j.

The key implication of (32) is the following:

Lemma A.8 Under (32) and Assumption A.5, if A, A1,---, A, € A are such that A;NA; C A
Vi # j, then E|X | Vi1 Fa,| = BElX | Vie1Fana,| for every Fa-measurable random variable X € L.

Proof. Since V is distributive over Nand 41 N4; CA1NAV2<i<n,
AN[AV (VI AD)] = (ANnA)V(VE,ANA) = AinA (35)

which by Lemma A.1 implies Fa, L F Av(Vr,Ag) Blven Fana,. Therefore, defining G = V' o Fa,,
Lemma A.4 implies (Vily Fa;) L Favn ;) given Fana, V (Vile Fa,) which by Lemma A.3 (a)
implies
(Vies Fa) L Fa given Fana, V (Vito Fa,) - (36)
Next, take any 2 < j <n — 1. By an argument similar to (35), A4;N[AV (ViL; 1 4)] = A4;NA
so that Lemma A.1 implies Fy4, L FAV(V?:jHAi) given Fana,. If we let G = ( ‘ij;ll]:AmAi) Vv
(Vi ;11F4,), then by Lemma A4,

(Vi1 Fana) V (VI Fa,) L Fa given (Vi Fana,) V (VI 41 Fa,) (37)

when we replace ]:Av(v?:jHAi) by F4 via Lemma A.3 (a).
Finally, since Fa, 1 Fa given Fana,,

(Vi Fana,) V Fa, L Fa given Vi Fana, (38)

when we add G — \/?:_11.7:,40,41. via Lemma A.4.
Now, take any Fa-measurable X € I;. By Lemma A.2, (36) implies

BIX | Vi Fa,l = BE[X | Fana, V (Vite Fa,) ] (39)
while for each 2 < j <n — 1, (37) implies
BIX [(VZ1Fana) V (Vi Fa) | = ELX (Vi Fana) V (Vi1 Fa,) ] (40)
and (38) implies
E[X (VIS Fana,) V Fa, ] = E[X | Vis Fana]- (41)

Linking the n indentities from (39), (40) and (41) yields E|X | Vie1Fa,| = E|X | Vis1Fana,] which
completes the proof. O

As the next result illustrates, under certain conditions, conditioning with respect to the strong
past G¢ is equivalent to conditioning with respect to a much simpler o-algebra.
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Proposition A.9 Take any C' = A\ U1 4; (A, A; € A). Under (32) and Assumptions A.5, A.6
and A.7, if X € Ly is Fa-measurable, then F|X |G&] = E|X | Vit Fa,]

Proof. Let A\ Ui, B; be the maximal representation of C' described in Assumption A.7. By
maximality, G&. = Fup_ B, so that G¢, = Vi Fp, by Assumption A.6. Furthemore, Lemma A.8
implies E|X | Vie1Fs,| = E|X |Vie1Fang;]. Therefore, by the tower property, it is sufficient to
show ViZ; Fang, € Vie1 Fa, € G5, Indeed, the right-most inclusion is trivial since A;NC' = ¢ Vi
whereas, for the left-most inclusion, it is sufficient to note that A\ U7X, AN B; = A\ UL AN A;
implies AN B; C J;-14; Vj. O

Since every C € C possesses a minimal representation, Proposition A.9 yields

Corollary A.10 Under (32) and Assumptions A.5, A.6 and A.7, given any C = A\B € C (A € A,
B e A(u)), if X € Ly is Fa-measurable, then E|X |G&| is Fa-measurable.

Unlike the square function inequality in Lemma 2.11, our set-indexed Rosenthal-like inequality
requires conditional independence of (F4).

Lemma A.11 Let M be a strong martingale in Lo. Under (32) and Assumptions A.5, A.6 and
AT if k- ke and Cq, -+, Cr are as defined in Lemma 2.10, then given any 2 < p < oo,

B[(S Eloe 202" < v Bl ) 2

where Cy = | Ji_; C; and k is a positive constant depending only on p.

Proof. Let H1 C--- C 'H, be as defined in Lemma 2.10, and let Hy = \/?51 Fymayy i k1 > 2
or Fg if k1 = 1. In either case, Ho € H; so that Theorem A.8-V in Hall and Heyde (1980) yields

(0 Btepen)”] < 08 [(5], 0007)

for some positive constant K. But by (2) and (4), Proposition A.9 implies

p/Q}

E[(MCZ)QWEK‘JZ] = B[(Mc,)*|Hi—1] Y1<i<r

so that (42) follows by Lemma 2.11. O
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