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Abstract

We define a generic form of quadratic variation for set-indexed strong
martingales and define a new mode of convergence for set-indexed processes
which places no explicit restrictions on the the size of the indexing class.
Under this mode, we derive a Central Limit Theorem (CLT) for set-indexed
strong martingales. As applications, we obtain a general CLT for sequences
of d-dimensional strong martingales as well as a CLT for set-indexed weighted
empirical processes.

AMS 1991 subject classification: Primary 60F05, 60G48; Secondary
60F17, 60G60.

Keywords and Phrases: set-indexed processes, strong martingales, quadratic
variation, flows, central limit theorem, weighted empirical processes.

Running Head: Strong Martingale Central Limit Theorems



1 Introduction.

In [16], Ivanoff and Merzbach introduced the notion of a set-indexed strong
martingale, a generalization of the multiparameter strong martingales defined
by Cairoli and Walsh in [10]. Among other things, a set-indexed strong
martingale is a set-indexed process, that is, a collection X = {X4 : A € A}
of random variables where A is a suitable class of compact subsets of a fixed
topological space T'. In this paper, we give conditions under which a sequence
of set-indexed strong martingales converges in some sense to a set-indexed
Gaussian process.

Employing the general theory of weak convergence in metric spaces, vari-
ous authors have studied functional (i.e., weak) convergence for sequences of
set-indexed partial-sum processes, X,, = {X,(A): A € A}, n € N. We high-
light several such attempts. In [3] and [22], conditions were given ensuring
functional convergence of smoothed versions of the X, to an A-indexed Gaus-
sian process with respect to the uniform topology. When each X,, possessed
a certain set-indexed form of cadlaguity, Bass and Pyke (cf. [5, 6]) gave con-
ditions implying functional convergence to an A-indexed Lévy process with
respect to a topology which was weaker than the uniform topology.

In the above works, A had to be sufficiently small with respect to the
notion of metric entropy (for example, A a Vapnik Cérvonenkis class) so as
to ensure the existence of path-regular versions of the limiting process. In-
deed, when A is the class of lower layers in T = [0,1]¢, d > 2, and W is any
A-indexed Gaussian process, it has been shown in [1] that sup 4 4 [Wa| = o0
a.s., ensuring failure of the cited methods to yield functional central limit
theorems (CLTs). For this reason, we devise an entirely new mode of con-
vergence for set-indexed processes termed flow-wise convergence. This mode
circumvents the said size restrictions, permitting CLTSs for strong martingales
indexed by a class A as large as the lower layers (cf. Proposition 7.2).

The paper is divided into six sections. Section 2 presents the general
framework. The core assumptions on A found therein are close to those in
[17]. This section also contains the definition of set-indexed strong martin-
gales and the limiting Gaussian processes. Section 3 introduces flows and
simple flows. Flows, which are functions of the form f : [0,1] — {finite
unions in A}, have appeared earlier in [17]. Our interest in flows lies in their
ability to transform set-indexed objects into continuous parameter objects
(i.e., indexed by [0,1] or R, ), and thereby eliminating the need for a metric



on T.

Section 4 introduces the flow-wise mode of convergence. In this mode,
rather than establishing functional convergence over the entire class A, one
establishes functional convergence over each range {f(t) : t € [0, 1]} where f
is a simple flow. Since each such range is trivially a Vapnik Cérvonenkis class,
it is no longer necessary to place size restrictions on A, nor is 7 required to be
metrizable. Furthermore, since the union of all such ranges captures A (cf.
Lemma 3.3), flow-wise convergence to a Gaussian process implies convergence
in finite dimensional distribution (cf. Proposition 4.3).

Section 5 introduces the notion of *-quadratic variation for set-indexed
strong martingales, a generalization of the usual quadratic variation for con-
tinuous parameter martingales. Unlike its continuous parameter counterpart,
a *-quadratic variation is not required to be adapted. This omission increases
the flexibility of the theory as demonstrated by Proposition 5.6 wherein a *-
quadratic variation for a set-indexed weighted empirical process is calculated.
The role of *-quadratic variation in flow-wise CLTs is highlighted below.

The main result of the paper, a flow-wise CLT for set-indexed strong mar-
tingales, is presented in Section 6. The general principle is this: given a se-
quence (X,,) of strong martingales with corresponding *-quadratic variations
(X}), under certain moment conditions, asymptotic rarefaction of jumps in
the sample paths of the X, plus convergence of (X*) to a continuous, de-
terministic limit implies flow-wise convergence of (X,,) to an appropriately
scaled Gaussian process W. As an application, a flow-wise CLT for weighted
empirical processes indexed by the class of lower layers is derived. In this
particular example, almost every sample path of the limiting Gaussian pro-
cess is discontinuous everywhere (cf. Remark 7.5). In addition, the general
flow-wise CLT yields a new functional CLT for d-dimensional strong martin-
gales with sample paths in the Skorokhod space D([0,1]¢) (cf. Proposition
7.1), which appears to be new even in the case d = 1.

2 Preliminaries.

In this paper, C will denote strict inclusion whereas increasing or decreasing
sequences of sets are understood to be monotone non-decreasing, respectively
monotone non-increasing with respect to C. Fix a Hausdorfl topological
space T. Given any S C T, denote the closure of S by S, the interior of



S by S° and the boundary of S by 9S. A sequence (S,) of subsets of T' is
said to be bounded if for some compact subset K of T, S, C K for every n.
Throughout, A will denote a collection of compact (hence closed) subsets of
T satisfying the following conditions:

(a) ¢ € A,

(b) there exists an increasing sequence (B,,) in A with U, B,, = T such that
for any A € A, A C B, all n sufficiently large,

(c) A is closed under countable intersections,
(d) (A,) increasing and bounded in A implies J, A4, € A and
(e) if A, B € A are such that A, B # ¢, then AN B # ¢.

To any such A we can associate three additional families: A(u) which consists
of all finite unions in A, C which consists of all set differences of the form A\ B
(Ae A B e A(u)) and C(u) which consists of all finite unions in C. A is a
semilattice under the partial order relation induced by set-inclusion and for
this reason, any finite subcollection of A which is closed under intersections
will be referred to as a finite sub-semilattice. Note that C is a semiring of
subsets of T' so that C(u) constitutes an ring. Clearly, A C C and A(u) C
C(u).

The following separability assumption has appeared in [17]. It will be in
force throughout the paper.

Assumption 2.1 There exists an increasing sequence (A,) of finite sub-
semilattices of A and a sequence (g,) of functions of the form g, : A —
A (u) U{T} (An(u) denotes the collection of all finite unions in \A,,) such

that given A, A’ € A,
(A1) (gn(A)) is decreasing with M, gn(4) = A,

(A2) AC g (A",

(A3) A C A implies A C ga(A) N A,

(A4)

Ad) AUA € A implies g,(AUA") = g,(A) Ugn(A") and



(A5) g, preserves countable intersections (i.e., g,(N°; Ai) = N4 gn(A4;)
for any (A;) in A).

Example 2.2 (a) When T = R? = [0,00)%, some d € N, examples of A
satisfying Assumption 2.1 include the lower rectangles {R. : z € R%} where
R, = T124]0, 2] for 2 = (21, -+, 24) € R% and the collection £L4 of lower
layers in Ri. A compact set I C Ri is a lower layer if z € L implies R, C L.
Both examples can be extended to the case of T = R? (cf. [17]).

(b) Let T be a tree with a finite number of edges. Embed T in R? so
that T is rooted at the origin and each edge is a line segment. A can be
taken to be the collection of all closed connected subsets of T, i.e., A consists
of all “continuous subtrees” of T'. Alternately, A can be the collection of all
A CT (t €T) where A; is the unique path in T from the origin to ¢.

(¢) An example where T is a function space can be found in [11].

Given n € N, define the function g, : A(u) — A,(u) U{T} by g.(B) =
Uaea, acs 9n(A), B € A(u). Since §,(A) = g.(A) for every A € A, we denote
this extension by g, as well. By (A4), g, preserves finite unions in A(u) so
that

9n(Uia Ai) = UiZi9n (4)) (1)

for any £k € N and Ay, -+, A, € A.
To play the role of 0 in the classical theory, we define

¢ = Naea,azs A

By (Al), (e), and the compactness of elements in A, ¢' is a non-empty
element of A. In fact, (A1) implies A is closed under arbitrary intersections.
Without loss of generality, we can assume all finite sub-semilattices of A
contain ¢’ but do not contain ¢.

Given any finite sub-semilattice A" of A, the sets in A’ can always be
numbered Ag, - - -, A for some k € N so that Ay = ¢’ and, given any 1 <
i <k, A; C A; implies 0 < j <i— 1. Following [17], we refer to any such
numbering as being consistent with the strong past.

Given a finite sub-semilattice A’ of A and an element A € A’, the left-
neighborhood of A in A’ is defined to be the set

CA = A \ UA’G.A’,AZA’ A (2)



so that Cy = ¢, Since A’ is finite and closed under intersections, Cy = A\
Uwea, arca A for each A € A'. Furthermore, if {Ag, - -, Ax} is a numbering
of A’ consistent with the strong past, we clearly have Cy, = A;\ U;;} A; for
ecach 1 <<k,

We now introduce a probability structure. Given a complete probability
space (2, F, P), an A-indezed filtration is any increasing family (Fa) = {Fa :
A € A} of complete sub-g-algebras of F for which

Fa = MnFa, (3)

for any decreasing sequence (A4,) in A with N, A, = A. (3) determines a
form of right-continuity for the filtration. Any A-indexed filtration can be
extended to an A(u)-indexed family by defining

F = e Fyun (4)
for any B € A(u) where F5 = Ve acs Fa. Given a set C' € C(u), the
strong past at C' is then defined to be the sub-o-algebra

G = \V T (5)

B e A(u)
BNncC =g

for C' ¢ A(u) and G& = Fy for C € A(u).

Any collection X = {X4 : A € A} of random variables is referred to as
a set-indexed process. When more convenient, we will write X(A) for X4.
In many cases, such a process can be uniquely extended to a finitely addi-
tive C(u)-indexed process, i.e., Xcup = X + Xp for any two disjoint sets
C,D € C(u). A necessary condition for such an extension is X, = 0. Suffi-
cient conditions can be found in [25]. Note that any process X possessing a
finitely additive extension to C(u) necessarily satisfies the inclusion-exclusion
formula,

Xe = > (D" X(ANNierds) (6)
IC{1,k}
for any C = A\ ¥, A; where A,/ A; € A and k € N. In the sequel,
unless otherwise stated, we will only work with set-functions and set-indexed
processes which possess unique finitely additive extensions to C(u).

Given an A-indexed process X and 1 <p < oo, if X4 € L, VA€ A we
say X is in L,. For the case of p = 1, such an X is said to be integrable. As
in the continuous parameter setting, a process X = {X4 : A € A} is adapted
to an A-indexed filtration (Fy4) if X4 is Fa-measurable VA € A.
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Definition 2.3 An adapted integrable process X = {X 4 : A € A} is a strong
martingale if F|Xc|Ga| = 0 for every C € C.

Comments. (i) The definition of a set-indexed strong martingale first
appeared in [16] and is a generalization of the planar strong martingales
introduced in [10]. Examples will be given in Section 5.

(ii) As mentioned in [17], if X is a strong martingale, then the relation
E[X¢|Ge] = 0 extends to all C' € C(u).

In the sequel, we will make extensive use of the theory of continuous pa-
rameter martingales, X = (X;) = {X; : t € |0, 1]}. Throughout, a filtration
(Fi) = {F: : t € ]0,1]} is understood to be increasing, complete and right-
continuous in the sense: Fy = Ny Fs Vit € [0,1). We let C[0, 1] denote
the collection of all continuous functions u : [0,1] — R. A process with
sample paths in C'[0, 1] is termed continuous. In addition, we let D0, 1] de-
note the collection of all functions x : [0,1] — R which are right-continuous
with left limits on [0, 1] and define Az(t) = z(t) — z(t—) V¢ € [0,1] with
the convention z(0—) = x(0). The elements of D[0,1] (or processes with
paths in D0, 1]) will occasionally be termed cadlag. The jump functional,
J: D[0,1] — |0, 00) defined by

J(z) = sup |Az(t)|, =€ D|0,1]

0<t<1

is measurable with respect to the Skorokhod .J; topology and is continuous at
every = € D|0, 1] for which Az(1) = 0 (cf. [19], p.303). An integrable process
X = (X,;) will be called increasing if its sample paths are non-negative,
right-continuous and increasing. Set-indexed analogues of these sample path
properties are defined below.

Definition 2.4 Let X = {X4: A € A} be a process.

(i) X is monotone outer-continuous if there is a set Q' of full P-measure
such that (A,) decreasing in A implies X (A,) — X(Nn An) on Q.

(i) X is monotone inner-continuous if there is a set Q' of full P-measure
such that for any increasing and bounded sequence (A,) in A, X (A,) —
X(UnAy) on €.




(iii) X is increasing if it is integrable, monotone outer-continuous and
Xe>0 as VO eC.

Comment. When T'= R, and A = {[0,¢] : ¢t € R, }, outer-continuity
reduces to right-continuity and inner-continuity reduces to left-continuity un-
der the identification ¢ < |0, t].

The key result of this paper, Theorem 6.1, gives conditions under which
a sequence of set-indexed strong martingales converges to an appropriately
scaled set-indexed Gaussian process. The class of limiting Gaussian processes
is defined below.

Definition 2.5 A : A — [0, 00) is said to be a variance function on A if it
is increasing, monotone inner- and outer-continuous and A(¢') = 0. Given a
variance function A, a process W = {Wa : A € A} is said to be a Gaussian
white noise based on A provided

(g2) E(WaWg)=AANB) VA, B € A and
(g3) C, D € C(u) disjoint implies We and Wp are independent.

Comments. (i) As mentioned on p.910 of [17], the existence of set-indexed
Gaussian white noise with a specified variance function is guaranteed by
Kolmogorov’s extension theorem.

(ii) By (4) and (g3), an A-indexed Gaussian white noise W is a strong
martingale with respect to its minimal filtration if W (A4,) — W(N,A,) in
L for every decreasing sequence (A,) in A.

3 Flows.

The present section concerns special paths in A(u) termed flows which will
play a key role in the upcoming limit theorems. Our definition of flow origi-
nates from [17].

Definition 3.1 Given a <bin R, a function f : [a,b] — A(u) is said to be
a flow provided



(i) a <t <s <bimplies f(t) C f(s),
(1) f(s) = Npss f(v) Va<s<b and

(iii) f(s) = Uucs f(v) Va<s <D

Condition (i) states that f is increasing on [a, b] with respect to C whereas
conditions (ii) and (iii) determine a form of right- (respectively, left-)continuity
for f. In the present paper, we will be primarily interested in the following
class of flows which are locally A-valued modulo a fixed set in A(u).

Definition 3.2 A flow f : [0,1] — A(u) is simple provided there is a finite
partition 0 =1ty <ty < --- <t =1 of [0,1] and corresponding flows

fitlticntil = A, i=1,---k
such that f(0) = ¢' and for each fivred 1 < i <k,
Jt) = Uz L) U fit) Ve [t ] (7)
The collection of all simple flows is denoted S(A).

Since the domain of any flow can be linearly rescaled, we can always take
t; = i/k in Definition 3.2. The next result, which appears as Lemma 3 in [17],
illustrates the richness of S(A).

Lemma 3.3 [f A" ={Ao,---, Ak} is a finite sub-semilattice of A numbered
in a manner consistent with the strong past, then there exists f € S(A) such
that

(a) f(i/k) = U] A; VO<i<k and
(b) Cay = fi/R)\F((A = 1)/k) V1 <i<F.

The following three lemmas illustrate the effect of simple flows on various
set-indexed elements. These properties will be required in the sequel.

Lemma 3.4 Fiz [ € S(A). If (Fa) is an A-indexed filtration, then (Fyw) =
{Frw 1t €0,1]} is a filtration. Moreover, given an A-indexed process X,



(a) X adapted to (Fa) implies X o [ is adapted to (Fyw)) and
(b) X a strong martingale implies X o f is a martingale.

Here, X o [ denotes the process {Xyu : t € |0,1]}.

Proof. Clearly, the family (Fy) is increasing and complete. For right-
continuity, take ¢ € [(i — 1)/k, Z/k’) for some 1 < i < k. For a fixed n,

(1) and (7) imply ga(f(5)) = UiZ1 92 (f5(3/k)) U ga(fils)) Vs € (1,ifk).
However, since f;(s) | fi(t) as s | t and g, is decreasing, preserves countable
intersections in A and has a finite range, there exists so € (¢,4/k) such that

gn(fi(s)) = gn(fi(1)) Vs € (L, 50) so that g.(f(s)) = ga(f(2)) Vs € (L, 50).
Therefore, since {Fpq) : ¢ € [0, 1]} is increasing,

NFis = [ Fro =) ) Fautssy ﬁf iy = Fre-

t<s t<s<s0 n t<s<sg

Part (a) follows from the inclusion Ff, C Fy), ¢ € [0,1], and the finite
additivity of X on C(u). A simple proof for (b) can be found in [17]. O

Lemma 3.5 Given a process X ={X4: A€ A} and any f € S(A),

(i) X monotone outer- (inner-)continuous implies X o f is right- (re-
spectively, left-)continuous and

(i) X increasing implies X o f is increasing.
Proof. A straighforward application of Definitions 2.4 and 3.1. O

We call a process Y = {Y; : t € [0, 1]} a stretched-out Brownian motion
if there exists a standard Brownian motion B = {B; : ¢t € R;} and a
continuous increasing function A : [0,1] — [0, 00) with A(0) = 0 such that
Y; = Bygy V€10, 1]. The proof of the following result is straightforward.

Lemma 3.6 IfW is an A-indezed Gaussian white noise based on A, then for

any f € S(A), Wof has a modification which is a standard Brownian motion
stretched out by the continuous increasing function Ao f :]0,1] — [0, 00).
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4 Flow-Wise Convergence.

A framework for functional convergence of set-indexed processes was intro-
duced in [5] for the case of T =[0,1]¢ (d € N) and in [15] for the case of a
general compact metric space T'. Central to this framework was the defini-
tion of a function space D(A) which served as an analogue to the classical
Skorokhod space D[0,1]. A typical element x : A — R of D(A) possessed
a set-indexed cadlaguity property while D(A) itself was equipped with a
Skorokhod .J»-like metric. Following classical lines, functional convergence of
A-indexed processes with sample paths in D(A) was then defined to be weak
convergence of the induced measures on the metric space D(A).

However, this approach required a metric on 7' and when A is large with
respect to the notion of metric entropy, an A-indexed Gaussian process may
not possess a version in D(A). Indeed, if W is any LLg-indexed Gaussian
white noise, some d > 2, then with probability 1, no path of W lies in
D(LLy)—a consequence of Proposition 1.3 on p.9 of [1]. This rules out the
possibility of functional CLTs in D(LL,) which is unfortunate since the lower
layers are a rather natural indexing class. In particular, £L4 is the smallest
collection of subsets of R% which contains all finite unions of lower rectangles
and is closed under countable intersections. For this reason, we introduce an
entirely new mode of convergence for set-indexed processes termed flow-wise
convergence which does not place explicit bounds on the size of A. As a
consequence, one can obtain non-trivial CLTs for processes indexed by the
lower layers of arbitrarily high dimension (Proposition 7.2). Furthermore,
the framework for flow-wise convergence does not require T' to be metrizable.
The class of admissible processes is defined below.

Definition 4.1 DI[S(A)] is the collection of all A-indexed processes X for
which X o f has a modification in D[0,1] for any f € S(A).

Elements of D|S(A)| include A-indexed strong martingales (Lemma 3.4),
any X which is either increasing or is monotone inner- and outer-continuous
(Lemma 3.5) and any A-indexed Gaussian white noise (Lemma 3.6). Given
X € D[S(A)] and f € S(A) we will write M;(X) for the unique (up to
indistinguishability) cadlag modification of X o f.

Throughout this paper, unless otherwise mentioned, weak convergence of
processes in D[0, 1] is defined with respect to the Skorokhod .J; topology.

11



Definition 4.2 Given processes X, X1, X, -+ in D[S(A)], (X,.) is said to
converge flow-wise to X if My(X,) —p M¢(X) in D[0,1] for every fized
feS(A).

Comments. (1) Flow-wise convergence is distributional and hence it is
not necessary for X, Xi, Xs, - - - to be defined on a common probability space.

(ii) While there is generally no relation between flow-wise and functional
convergence, if T = R, and A" = {[0,z] : z € R, }, flow-wise convergence of
processes in D(A") is stronger than functional convergence. In particular, if
we identify D(A') with D[0,1] via z — [0, z], then flow-wise convergence is
equivalent to convergence with respect to the Skorokhod .J; topology whereas
functional convergence in D(A') is equivalent to convergence with respect to
the weaker Skorokhod .J; topology (cf. [24, 15])).

When the limiting process is a Gaussian white noise, flow-wise conver-
gence implies convergence in finite dimensional distribution. This is a special
case of the following result.

Proposition 4.3 [f A-indexed processes (X,,) converge flow-wise to an A-

indexed process X which admits a continuous modification M¢(X) for each
f € S(A), then for any finite subcollection {Cy,- -+, Cir} of C(u),

(Xa(Co), -+ XulCk)) —p (X(Co), -+, X(C))
as random vectors.

Proof. We only consider the case in which Cy, - - -, C, are the left-neighbor-
hoods generated by a finite sub-semilattice A" = {Ao, - -, Ax} of A which is
numbered in a manner consistent with the strong past. The extension to the
general case is straightforward (cf. [25]).

By Lemma 3.3, there exists f € S(A) such that

Ci = fA/RN (G =1)/k) VI<i<k (8)

and Cy = ¢ = f(0). Thus, since M¢(X,) —p M¢(X) in D|0, 1], the defini-
tion of modification yields

D
(X r0)s Xnopasmys s X)) — (Xpo) Xpamy, - X))

12



where X, g .= X,.(B), B € A(u). The result now follows by (8) and the
continuous mapping theorem. O

We note that the preceding proposition may be applied to any A-indexed
Gaussian white noise W since by Lemma 3.6, M (W) is continuous.

5 (Quadratic Variation

Let Y = {Y; : t € [0,1]} be a cadlag martingale in L. By the Doob-Meyer
decomposition theorem, there exists a unique (up to indistinguishability)
increasing and predictable process (V') termed the predictable quadratic vari-
ation of Y for which Y2 — (Y') is a martingale and {Y)(0) = Y*(0). The role
of predictable quadratic variation in martingale CLTs is illustrated by the
following result which appears on p.179 of [21].

Proposition 5.1 Take a sequence (Y,) of Lo martingales in DI0, 1] with
Y.(0) =0 Vn. If

(i) E[J(Y,)?| — 0 as n — oo and
(ii) (Yn)(t) — A(t) in probability as n — oo, any t € [0, 1],

where A : [0,1] — [0,00) is continuous and increasing with A(0) = 0, then
Y, —p By in D[0,1], By a standard Brownian motion stretched out by A.

By slightly altering the conditions in Proposition 5.1, one can replace (Y},)
in (i) with the optional quadratic variation [Y,] (cf.[12]). In other words,
Y, —p B, follows if the Y, asymptotically resemble By in two respects:
asymptotically continuous samples paths (condition (i)) and quadratic vari-
ation (condition (ii)).

In this section, we introduce a notion of quadratic variation for set-
indexed processes. The role it will play in the upcoming strong martin-
gale CLT will be similar to that played by predictable quadratic variation in
Proposition 5.1.

Definition 5.2 Given a strong martingale X = {Xa : A € A} in Lo, an
increasing process X* = {X% + A € A} is a *-quadratic variation of X if
E[(Xc)?|Ge] = BIXE| G for every C € C(u).
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Comments. (i) Unlike its continuous parameter counterpart, a *-quadratic
variation X* of a strong martingale X is not required to be adapted. Further-
more, even if X* is adapted to the filtration to which X is adapted, X? — X*
need not be a strong martingale since (X¢)? and X2 may fail to coincide.
Here, (X)? is the square of the increment of X at C' while X2 denotes the
increment of X? at C.

(ii) Conditions ensuring existence, adaptedness and a form of predictablil-
ity for *-quadratic variation were given in [25] and will appear in a future
publication. However, in this paper, no property of *-quadratic variation
outside of Definition 5.2 is required.

By Lemma 3.4, composing a strong martingale with a simple flow yields
a martingale on [0, 1]. The effect of simple flows on *-quadratic variation is
given by the following result.

Lemma 5.3 Let X be an A-indexed strong martingale in Ly with *-quadratic
variation X*. Given f € S(A), if V := X*o f and Y is the cadlag modifica-
tion of the martingale X o f, then for any s <t in [0,1],

BE(Y?=Y2 | Fio) = E(Vi = V| Fps) -

Hence, V is a *-quadratic variation for'Y and for any s <t in [0,1], E(Y),—
Yl Fr9)) = EVe = Vi | Fie))-

Proof. Since Y is a martingale with respect to (Fy),

B[ =Y7) = (Vi= Vo) [ Fr s)]

= B[(Yi—=Y.)? = (Vi = Vo) | Fpo) +2Ye - E(Y: = Yo | Fys))
= E[(Yi =Yy’ = (Vi = Vo) | Fyo)]
= Bl(Xpws)” = Xjonso | Frol -

Therefore, since (5) implies Fy) C G f(s)» the proof follows by the tower
property and the definition of *-quadratic variation. O

In the remainder of this section, we study a special class of strong martin-

gales for which *-quadratic variation can be explicitly calculated. Fix d € N
and take a continuous distribution function F' : R4 — [0,1]. Using marginal
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transforms if necessary, we may assume that F' is supported on [0, 1]¢ (cf. [9]).
Now, take two sequences: (Y;,) of i.i.d. random vectors distributed F" and (Z,)
of 1.i.d. random variables which is independent of (Y,,) with E(Z;) = 0 and
E(Z%) = 1. Tor technical reasons, we also insist that P(Z; = 0) = 0. In
addition to the conditions in Section 2, A is a collection of closed subsets of
T = [0, 1] satisfying the following;

Assumption 5.4 Every C = A\ B € C (A € A, B € A(u)) possesses a
mazimal representation, that is, there exists n € N and A, A5,---, A, € A
with ¢ = A\ Ul 4; such that A; € A; Vi # j and, given B’ € A(u),
B'NC = ¢ implies B’ C |J! ; A;. Further,

(a) A contains all lower rectangles R., z € [0, 1]¢, and

(b) gn(A) ={B € A.(u) : A C B°} for any A € A where A, consists
of all lower rectangles R, with 2, = $* for some m; € {0,1,---,2"},
eachi=1,---,d.

This assumption appeared in [18] in connection with Poisson convergence
of set-indexed empirical processes. Examples of A for which it is satisfied
include the class of all lower rectangles and the class of all lower layers in
0,1)¢. By (a), any such A generates the Borel o-algebra on [0, 1],

For each k € N, define an A-indexed process My by setting

Mk<A) = 1[YkeA] A Ae A

and let U,, := n='/2 31| My, the n-th A-indexed weighted empirical process.
For each B € A(u), define Hp to be the completion of o({My(A) : k €
N, Ac A and A C B}) and let Fu := N, Hy,a) VA € A. Clearly, (Fa) is
an A-indexed filtration to which both M,, and U, are adapted. The finitely
additive extensions of My and U, to C(u) are the obvious ones.

Given z, 2" € (0,1]%, define the intervals [z, 2'] = [1¢, [z, 2/] and (z, 2] =
1% (2, 21]. In addition, given z € (0,1)%, define the sets S, = (2,1], S._ =
[z,1] and L, = [0,1]* \ S.. Note that (z,2/] € C and L, € A(u). It is
straightforward to show G, . = Fr, = M, Hg,(.) for any z € (0,1)%.

Fix k and take a random variable W independent of Y. If C' = (z, 2],
then since C' C S,, the smoothing property of conditional expectation (cf. [4],

Theorem 6.5.9 (a)) and a straightforward limiting argument yield
ElyeciWlGo] = Lyies) E(W) F(C) he(2) (9)
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where hp(z) = [F(S._)|™' whenever F'(S,_) > 0 and hp(z) = 0 otherwise.
In particular, E[My(z,2'||G(, 1] = 0. Following [18], this relation can be
extended to all sets C' € C(u); since {Gf. : C € C(u)} is decreasing and
M is finitely additive, conditioning implies E[My(D)|G},| = 0 for any finite
disjoint union D = |J; C; where each C; is of the form (z, 2’]. Furthermore,
under Assumption 5.4, any C' € C(u) can be approximated by a sequence of

such unions so that dominated convergence implies E[M(C)|Ge] = 0 (cf.
p.84 of [18]). Therefore, we have shown

Proposition 5.5 Under Assumption 5.4, each My (and hence each U,) is
a strong martingale with respect to (Fa).

In addition,

Proposition 5.6 Under Assumption 5.4, My has *-quadratic variation
M;(A) = /A Lo hr dFF, A€ A.
Furthermore, U* = n=t 7, M} is a *-quadratic variation of U,.

Proof. Clearly, M} is an increasing process whose finitely additive exten-
sion to C(u) is the obvious one. As shown on p.83 of [18], when C' = (z, /|,

EIM(O)Gel = Lyies F(C) he(2). (10)

Therefore, since E(Z7) = 1, (9) implies E[(My(C))* — M} (C)|Gs] = 0. As
described above, this relation can be extended to finite disjoint unions of sets
of the form (z,2'] and then to general C' € C(u).

Given C' = (z,72'], (9) can be generalized to yield

BIMA{(C) My(C)IGE) = Lyiee,viee) E(Z) E(Z;) F(C) hp(2) = 0.

Thus, since M is a *-quadratic variation of My, E[(U.(C))*~U(C)|G&] = 0.
As before, this relation extends to all C' € C(u). O
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6 A CLT For Set-Indexed Martingales.

This section contains the main result of the paper, a flow-wise CLT for se-
quences of set-indexed strong martingales. Recall that any A-indexed strong
martingale and any A-indexed Gaussian white noise lie in D[S(A)] so that
the flow-wise mode of convergence is permissible in this setting. For simplic-
ity, we state and prove this CLT for the case of T compact with T € A. Using
standard techniques, this can be extended the case of a general o-compact
T if conditions (i) and (11) hold with By, in place of T', each k, where (By)
is the sequence in A defined in Section 2.

Theorem 6.1 Let X, X5, -+ be A-indexed strong martingales in Lo with
X, (¢') =0 ¥n such that

(i) sup, E[|X.(T)|*"] < 0o for some § > 0 and
(i) J(Mp(X,)) == 0 as n — oo for any fived f € S(A).
If for each n € N there exists a quadratic variation X of X, such that
{X3(T) :n > 1} is uniformly integrable (11)
and there exists a variance function A on A such that

X (A) — A(A) in probability ¥V A € A, (12)

n

then (X,,) converges flow-wise to an A-indexed Gaussian white noise W based

on A.

Comments. (a) Theorem 6.1 generalizes the principle found in Propo-
sition 5.1. Namely, under a certain moment condition, if the jumps in the
paths of the X,, become asymptotically negligible in the sense of condition
(ii) and if there exists *-quadratic variations X* of X,, which converge to a
continuous, increasing, deterministic limit A, then (X,,) converges flow-wise
to a Gaussian white noise based on A.

(b) It has been shown in [25] that tightness plus convergence of finite-
dimensional distributions implies functional convergence in D(A), the func-
tion space mentioned in the introduction of Section 4. Therefore, Theo-
rem 6.1 and Proposition 4.3 yield functional CLTs for tight sequences of
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strong martingales in D(A). Generic tightness criteria for processes in D(A)
can be found in [25]. However, as mentioned in Section 4, to ensure the ex-
istence of a limiting Gaussian process in D(A), A must be sufficiently small,
for example a Vapnik-Cervonenkis class on 7.

(¢) In [25], conditions on A and (Fy4) were given under which (ii) implies
the existence of *-quadratic variations X7, X3, - - - satisfying (11).

Proof. Let W be an A-indexed Gaussian white noise based on A. For the
sake of notation, we consider only the case in which each X, is defined with
respect to a common filtration (F4) on a common (2, F, P) and W is also
defined on (2, F, P)—the proof for the non-homogeneous case is identical.

Fix a simple flow f : [0,1] — A(u). Since T € A, we may assume without
loss of generality that f(1) = T. For each n € N, define processes Y,, and
V. on [0,1] by letting Y,, = M¢(X,,) and V,, = M;(X}) = X o f. Note that
assumptions (i), (i) and Doob’s inequality imply that E[J(Y;,)?] — 0 since
J(Ya) < 2supge < |Ya(s)|. Applying Lemmas 3.4 and 3.5 in that order,

(f1) Y, is a cadlag Lo martingale with respect to the filtration (H;) where
Hy = Fruyn t € [0, 1], and

(f2) V, is an increasing (but not necessarily adapted) process.

If we set A(t) == A(f(t)) Vt € [0,1], then Lemma 3.5 implies A is increasing
and continuous on [0, 1] with A(0) = 0. Therefore, if we can show

V)t -5 M) Yie[o1], (13)

then M;(X,) —p My(W) in D|0,1] will follow by Proposition 5.1 and
Lemma 3.6.

Since A and each X have finitely additive extensions to C(u), assumption
(12) can be extended to all sets in A(u) so that

V(1) <5 A1) Vielo1]. (14)

To obtain (13) from (14), it will first be shown that {(¥,,) : n > 1} is tight in
D|0, 1]. Then, it will be argued that any weak limit point 7 of {(Y,,) : n > 1}
is continuous and increasing with Z — A a martingale so that 7 — X is a
continuous martingale of finite variation. By Proposition 1V-1.2 in [23], any
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such Z — A is necessarily indistinguishable from the zero process, i.e., Z = A
so that tightness implies weak convergence in D[0, 1] of {(¥,,) : n > 1} to the
continuous determistic limit A. These details are the content of the next two
lemmas. O

Lemma 6.2 {(Y,):n > 1} is tight in D0, 1] with respect to the Skorokhod
J1 topology.

Lemma 6.3 If 7 is the limiting process of a weakly convergent subsequence
of {{Y,) :n>1}, then

(a) Z is continuous and increasing and
(b) Z — X is a martingale with respect to its minimal filtration.

Proof of Lemma 6.2. We employ the 1-dimensional stopping time con-
dition of Aldous (cf.[2], Theorem 1). To begin with, note that tightness
of {{Y,)(t) : n > 1} for any fixed ¢ € [0, 1] follows easily from Markov’s
inequality and assumption (i) since each (Y},) is increasing.

Take a sequence (d,,) of constants where 0 < 4, <1 Vn and §,, — 0 and
for each n, take a stopping time 7, : @ — [0, 1] with respect to the filtration
generated by (Y,,). We will verify condition (A) of Aldous,

(Ya)(0n) = (Ya) (1) == 0 asn — oo (A)

where 0, :==1 A (7, + d,) Vn by establishing L, convergence.

Since (Y,) is adapted to (H:), 7, and o, are both stopping times with
respect to (H;). However, since V;, is not necessarily adapted to (H:), (Ya) —
V., is not necessarily a martingale with respect to (H;). Just the same,
applying (f2) and Lemma 5.3, the proof of Doob’s optional stopping theorem
can be easily extended to our situation so as to yield

E[(Ya)(on) = (Ya) () [ Hr ] = EVa(0n) = Va(m) [Hr] Yo
Hence, it is sufficient to show lim,, E[V,.(0,) — V,.(1,)] = 0.

Given any n,
Valon) = Va(m)] < [Valon) = Mow)| + [Va(ma) = A7) +
[A(on) = A7)
< 20 sup V() = AW + [Mn) = A7)l
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Applying Lemma 1 in [20], (14) implies sup o< ,<q |Va(t) — A(t)] L., 0 s0 that
Vi(0m) — V()| == 0 follows from the continuity of A. Therefore, since
V,, is increasing, |V,.(0,) — Vi.(7,)| <2V, (1) = 2 X(T) so that (11) implies
lim,, B[V, (0,) —V,.(7,)] = 0 by dominated convergence, completing the proof
of Lemma 6.2. O

Proof of Lemma 6.3 (a). Suppose (Y,/) —p Z in D[0,1] along a subse-
quence (n'). For the sake of notation, take n = n’ and assume 7 is also
defined on (2, F, P). Being the weak limit of increasing processes in D|0, 1],
/ 1s necessarily increasing.

Next, we establish the sample path continuity of Z. Since {(Y,) : n > 1}
is tight in D0, 1], it is sufficient by Proposition VI-3.26 in [19] to show

JUY,)) 50 as n— oc. (15)

Given n € N and € > 0, define S,, = inf{0 <t <1 : A(Y,,)(t) > €} with
the convention inf ¢ = oo. (15) will follow if we can show P(S, < 1) — 0 as
n — oo for every € > 0. Our argument will be close to that found on p.268
of [13].

Fix ¢ > 0. Given any n, since (Y,) is non-negative and increasing,
(A(Y.))s, > e on [S, <1]so that

P(S,<1) < ¢ E15,<1) (A{Ya))s, |- (16)

Furthermore, since S,, is a predictable stopping time with respect to (H;)
(cf. [19], Proposition 1-2.13) and since (f2) and Lemma 5.3 allow us to extend
Doob’s optional stopping theorem, we have

E[(AYa))s, [ Hs.—] = E[(AVn)s, | Hs, - ].
Therefore, conditioning and (16) yield
P(Sa<1) < € Bl <1 (AV)s, | < € E[J(Va)].

As mentioned in the proof of Lemma 6.2, (14) implies sup, |V, (t) —

A(t)| -5 0 so that J(V,,) = 0 by the continuous mapping theorem. There-
fore, since J(V,,) < 2 X*(T), (11) implies E[J(V},)] — 0 as n — oo so that
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P(S, < 1) — 0, hence completing the proof of Lemma 6.3 (a). O

Proof of Lemma 6.3 (b). Once again, assume (Y, ) converges weakly in
D|0, 1]to a process Z on (2, F,P). Let M = Z — X. For each 0 <t < 1,
define G; = o({ 7, : 0 <u < t}) and let (G;) denote the filtration generated
by the family (G7). Since A(t) is deterministic V¢ € [0, 1], (G;) is in fact the
minimal filtration generated by M.

The following argument is analogous to that found on pp.260-261 of [13].
Let T'; denote the set of P-continuity points of Z;. Given any s € [0, 1], it is
clear that

Es = N [Zs <xi] :meN,0<s; <sViandux €l Vi}

is a m-class generating G¢. Therefore, given s < t in [0, 1], if we can show
/A(Mt—Ms)dP:O VA€E, (17)

then E[M,;| G2 = M, will follow. By Lemma 6.3 (a), replacing G by G, in
this relation is a simple application of dominated convergence since

EIMi|Gs] = EIE(MG1/n)9s] = ElMai1mlGsl

for all sufficiently large n. With this reduction in mind, fix s < ¢ in [0, 1]
and select a set A = NI4[7(s;) < x| in €,. For each n, define the set
An = N5 [{(Ya)(s:) < x4] and the process M,, = (V) — V,,. To save space,
given any process or function U, we will write U(s, t| for U(t) — U(s).

Since (Y,,) — Z in finite dimensional distribution, it is clear that 14, —p
14 so that (14) implies

V(s 1] - 1a, - A(s, 1]~ 1a. (18)

Furthermore, since P({Y,,)(s,t]- 14, > x) = P ([{Ya)(s,t] > x| N A,,) for every
n >1and z > 0, it is straightforward to show

(Yo)(s,t] - 1a, = Z(s,t] - 14. (19)

Employing the discrete approximation of predictable quadratic varia-
tion, assumption (i) and Rosenthal’s inequality imply {{(Y,)(1) : n > 1}
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is uniformly integrable. Thus, since [{¥,)(s,t] - 14, | < 2(Y)(1) Vn, we
have {(Y,.)(s,t] - 14, : n > 1} uniformly integrable. Likewise, (11) implies
{Va(s,t]-14, : n > 1} is uniformly integrable. Hence, (18), (19) and the dom-
inated convergence theorem (cf.[8], Theorem 25.12)imply [, M (s, t|dP =
lim, fy M,(s,t]dP. Furthermore, since (Y,) is adapted to (Fyu), An €
Fis) Vn. Therefore, Lemma 5.3 implies [, M,(s,t]dP = 0 Vn which es-
tablishes (17) and completes the proof of Lemma 6.3 (b). O

We observe that in the course of proving the central limit theorem, it was
shown that if any sequence of quadratic variation processes corresponding to
a sequence of continuous parameter martingales is asymptotically determin-
istic, then the usual predictable quadratic variations will exhibit the same
behaviour. This is summarized in the following lemma which may be of
independent interest:

Lemma 6.4 Let (Y,,) be a sequence of martingales on [0,1] and let (V,,) be
any sequence of corresponding *-quadratic variations. Assume that:

(a) sup, E[|Ya(1)|**°] < 0o for some 6 >0, and
(b) (Va(1))n is uniformly integrable.

If there exists a continuous function A such that
Vi(s) == A(s) Vs € [0, 1],

then

(Y)a(s) = A(s) Vs € [0,1].

7 Applications

In this section, we present two consequences of Theorem 6.1. The first is a
functional CLT for sequences of multidimensional strong martingales. The
second is a flow-wise CLT for sequences of weighted empirical processes in-
dexed by the lower layers in [0,1]¢, d > 2, a class too large to support a
continuous (or even bounded) Gaussian white noise.

Before presenting the first application, we recall several concepts from
the multiparameter theory. Given z, 2’ € [0,1]¢, we write 2 < 2/ if 2; < 2/ for
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each i =1,---,dand 2z < 2/ if 2; < 2/ for every ¢ = 1,---,d. Fix a complete
probability space (Q,F, P). A family {F, : z € [0,1]¢} of sub-o-algebras of
F constitutes a d-dimensional filtration if: Fy contains all P-null subsets of
Q, 2 < 2 implies F, C F and F, = (oow Fo for any z € [0,1)¢. This
differs slightly from the definition given in [10] in that we do not require
their (F4) conditional independence assumption to hold. In this setting, the
strong past at z € (0, 1] is the sub-o-algebra

F— \ Fo.
zA2

Given a process Y = {Y, : 2z € [0,1]¢} and points z < 2’ in (0,1]¢, the
increment of Y over (z, 2] is defined to be Y (z,2/] = 3, (—1)MIY(2;), the
sum ranging over all J C {1,---,d} where z,(i) = z; if i € J and z,;(i) =
2l otherwise. An adapted integrable process Y is a d-dimensional strong
martingale if Y vanishes on the axes and for every z < 2’ € (0, 1]¢

EY(z,2||F%] = 0.

We now introduce a general notion of quadratic variation for d-dimensional
strong martingales. Given a strong martingale Y = {Y, : z € [0,1]%} in Lo,
an integrable process V. = {V, : 2z € [0,1]¢} which vanishes on the axes
constitutes a general quadratic variation of Y if

(G1) z <2 in (0,1]¢ implies V(z, '] > 0,
(G2) (z) decreasing to 2 in [0, 1]¢ implies V(2) — V(2) on Q and
(G3) E[(Y(z,2])*|Ft] = E[V(z, ]| FZ] for every z < 2" in (0, 1]4.

As was the case for *-quadratic variation, a general quadratic variation is not
required to be adapted or to possess any form of predictability. In the case
of d =1, both optional and predictable quadratic variation are examples of
general quadratic variation.

Let Dg = D([0,1]%) denote the Skorokhod space of d-dimensional cadlag
functions, z : [0,1]¢ — R (cf. [7]). Given x € Dy and z € (0,1]¢, define
Az(z) = z(z) — lim<, x(z) As a consequence of Theorem 6.1, we have the
following functional CLT for multiparameter strong martingales.

Proposition 7.1 For each n € N, let Y,, = {V,(z) : 2 € [0, 1]%} be a strong
martingale in Dy such that
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(i) sup, E[|Ya(1)]*™] < oo for some 8 > 0 and

(ii) sup,eop [AYn(2)] 2.0 as n — 0.

Assume that for each n € N there exists a general quadratic variation Vi,
of Y, such that {V,(1) : n > 1} is uniformly integrable. If there exists an
increasing function H : [0,1]% — [0, 00) which is continuous in the sense

()2 = H(z) T (1) H(z)
such that
Va(2) — H(2) in probability ¥ z € [0, 1]¢,

then Y, —p By in the Ji-topology on Dy where By is a d-dimensional
Brownian motion with E|W,W.| = H(z A2') for every z,z' € ]0,1]%.

Proof. 1t is straightforward to show that X, defined by X,(R.) := Y,(2)
is a strong martingale indexed by the collection A = {R, : 2z € [0,1]¢} of
lower rectangles in [0, 1]¢. Furthemore, if we define X*(R,) := V,(2), then
X is a *-quadratic variation of X,,. In particular, since each C' € C(u) is a
finite disjoint union of sets of the form (z,2'] € C (» < 2’) and F; = G, .,
a simple conditioning argument allows us to extend (G3) to all sets in C(u).
Clearly, the conditions of Theorem 6.1 hold since

J(Mp(Xn)) < sup.eo e |AYa(2)]

for any f € S(A). Therefore, by Proposition 4.3, the finite dimensional
distributions of (X,,) converges to those of a Gaussian white noise {W(R,) :
z € 0,1]%} based on the variance function A where A(R,) := H(2).

Define By = {Bu(z) : z € [0,1]%} to be a path-continuous version of
{W(R.): 2z €10,1]%} (cf. [1]). Then, (¥,) is a sequence of strong martingales
converging in finite dimensional distribution to the continuous process By.
By Theorem 4 of [14], this is sufficient for ¥,, —p By in Dy. O

Comment. Even for the case of d = 1, Theorem 6.1 is new in that the
quadratic variations of the 1-dimensional martingales Y,, need not be adapted.

For the second application of Theorem 6.1, recall the sequence (U,,) of
weighted empirical processes defined in Section 5. When 77 ~ N(0,1) and
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A =1{R. : 2 € [0,1]4}, Burke in [9] established functional convergence in
Dy of (U,), each U, viewed as a point-indexed process U,(z) = U,(R.),
to an appropriately scaled d-dimensional Brownian motion. Although the
mode of convergence may no longer be equivalent to the functional mode,
the following flow-wise CLT applies to more general (7,,) and \A.

Proposition 7.2 Under Assumption 5.4, if E(Z}) < oo, then (U,) con-
verges flow-wise to an A-indexed Gaussian white noise W based on I,

As this proposition suggests, F' restricted to A is a variance function.
Monotone outer-continuity of F' is immediate whereas monotone inner-con-
tinuity is implied by the following result.

Lemma 7.3 Under Assumption 5.4, lim, F(A,) = F(U, An) for any in-
creasing sequence (Ay) in A(u).

Proof. Take an increasing sequence (A,) in A(u) and let B = U, A,. If
we define g (B) = U{B’ € A,(u) : B' C B°} for each n € N, then by a
straightforward but tedious argument, B\ U, A, € 9B C g,(B)\g;(B) Vn
and A(gn(B)\ g, (B)) — 0 as n — oo where A denotes Lebesgue measure on
0, 1]¢. Therefore, since F is continuous, F(B) = F(U, A,) = lim, F(A,). O

Toward the proof of Proposition 7.2, we verify the required asymptotic
rarefaction of jumps condition for (U,).

Lemma 7.4 Under Assumption 5.4, for any [ € S(A), E[J(M;(U,))*] — 0
as n — 00.

Proof. Fix f € S(A) and define Iy : [0,1] — [0,1] by F¢(t) :== F(f()).
By the continuity of flows and Lemma 7.3, Iy determines a continuous dis-
tribution function. (Since [0,1]* € A, it can be assumed without loss of
generality that f(1) = [0,1]%.) If for each n € N we define W,, = inf{t €
0,1] : ¥, € f(t)}, then (W,,) is i.i.d. with common distribution .

Given t € (0, 1], define Af(t) = f(t) \ U, f(8). Clearly, [W; =t] =Y €
Af(t)] Viso that

|AUn<f<t))| - |Un<Af<t))| < n_1/2 1[2?2%|Z1| Zl[Wi:t]'
- =1
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Furthermore, the continuity of Fy implies [W; # W;] has zero measure for
every ¢ =% j so that

0 2 -1 2
EUGH U] = B | pax [AVG@)F| < n7'B [max 22).
But (Z;) is i.i.d. with E(Z}) < oo. Therefore, F|maxi<i<, Z7| = o(n) which
completes the proof of Lemma 7.4, O

Proof of Proposition 7.2. We must verify the remaining conditions of
Theorem 6.1. First, under Assumption 5.4, ¢’ = {0} so that the continuity
of I’ implies U, (¢') = 0. Next, given n € N, observe that (37 ; Z;)? contains
n terms of the form Z;' and 3n(n—1) terms of the form 7?77 so that the i.i.d.
assumption on (7;) yields E[(U,([0,1])4] = n1E(Z}) +3(1 —n=Y)(E(Z}))%
This implies condition (i) is satisfied with ¢ = 2.

Let M} and U} be as defined in Proposition 5.6. Conditions (11) and
(12) will follow if B[U*(A)] = F(A) and Uz (A) = F(A) for every A € A.

The fact that

E[U,(C)] = F(C) (20)

for every C' € C is a simple consequence of (10). We shall show that

Uz (A) L5 F(A), for every set A € A of the form A — R,. If this is the case,

then it follows that U?(4) - F(A) for A € A of the form A — Ur_ R, .
For an arbitrary set A € A, the absolute continuity of F" and the fact that A

can be approximated uniformly by finite unions of rectangles permits us to

conclude that UZ(A) > F(A),

To avoid technicalities in what follows, we shall assume that the density
f of F with respect to Lebesgue measure is strictly positive. We shall prove
below that U (A) — F(A) in Ly for every set A = R, where z < (1,...,1).
This suffices, since if D = R, where v; = 1 for at least one ¢, a sequence
(zm) = (Zm,1, ey Zm.d)m €xists with z, < 1 ¥m and such that R,,, C D and
F(D\ R,, ) < 1/m. Hence, by (20)

P(UL(D) = Up(Rx, )| = €) < 1/me

for every n. Now, if U*(R., ) - F(R.,) as n — oo and since F(R., ) —

F(D) as m — oo, it follows that U (D) - F(D) as n — co.
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Therefore it suffices to show that for 2 < 1 and A = R,,

El(Un(A))*] = (F(4))% (21)
Now,
AP = Y[ et )
+ n_Q; [ Toxahr ()P ()
| Joyhe()dF @) (23)

By independence, the expected value of (23) is
n~*n(n — )(F(A))* — (F(A))*.

Thus, (21) will follow if it can be shown that the expected value of (22)
converges to 0. We may apply a d-dimensional integration by parts formula
to show that for an integrable function f : [0,1]* — R, (f(2))? may be
expressed as a finite linear combination of integrals of the form [5_f(w)df (u),
where v’ is such that u}; = u; Vj € J where J is some nonempty subset of

{1, d}, and ufy = 2; Vj & J. If we let

F(@)= [, Toxhe (u)dF(u),

then a straightforward calculation shows that

< hr(z) = (F(S.)) ™" <0 (24)

Bl [ s
if 2 < 1, and so the expected value of (22) converges to 0 as required. O

Remark 7.5 When d > 2 and A is the class of lower layers in [0, 1)¢, Propo-
sition 7.2 implies flow-wise convergence of (U,) to a Gaussian white noise, al-
most every sample path of which is necessarily discontinuous at every A € A
with respect to the Hausdorff metric on A (cf. [1], Proposition 1.3).
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