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Abstract

The self-exciting property for point processes on the half-line was
defined by Kwieciriski and Szekli (1996) for each one of three partial
orders. Here we unify these definitions of the self-exciting property
through a single treatment of an arbitrary closed partial order on the
space of integer measures. The self-exciting property is characterized
by the behaviour of the compensator of the point process over a class
(specific to the order) of “echelon” sets. Our definition recovers and
generalizes those of Kwieciniski and Szekli.

AMS 1991 subject classification: Primary 60G55; Secondary 60G57

Keywords and Phrases: Self-exciting point process, closed partial or-
der, echelon set, compensator

Running Head: A note on self-exciting point processes

Address:

Department of Mathematics and Statistics
University of Ottawa,

585 King Edward

P.O. Box 450 Station A

Ottawa, Ontario,

CANADA KIN 6N5

email: s596100@matrix.cc.uottawa.ca



1 Introduction

This note is inspired by an article of Kwieciriski and Szekli (1996). Their
article formalized the self-exciting property of point processes, and estab-
lished positive association properties for point processes they identified as
self-exciting. For three natural partial orders on the space of integer measures
on R, they defined the self-exciting property in terms of the compensator,
intensity and failure rate associated to a point process.

There were certain limitations inherent in Kwiecinski and Szekli’s defini-
tions. A separate definition of the self-exciting property was required for
each partial order; the definitions required that the process have absolutely
continuous conditional interarrival distributions; finally, one definition ap-
peared somewhat counter-intuitive, as it regarded renewal processes on the
half-line with strictly increasing failure rates as self-exciting with respect to
the corresponding order.

In this note we propose a unified approach to defining the self-exciting prop-
erty based upon testing the compensator measure on a class of order-specific
“echelon sets”. We thus obtain one specific class of echelon sets for each of
the three orders introduced by Kwiecinski and Szekli. This approach simpli-
fies the definition of the self-exciting property. Our definition coincides with
those of Kwiecinski and Szekli in two of three cases, and offers a more intu-
itive characterization of the self-exciting property in the third case (by which
renewal processes with strictly increasing failure rates are not self-exciting).
An advantage of our approach is that a (simple) point process is not required
to have an intensity to be self-exciting: only the compensator in its regen-
erative form — which always exists — is invoked. More importantly, the
technique may be applied to an arbitrary closed partial order.

Section 2 provides the definitions and main theorems, Section 3 focuses on
the self-exciting property as it relates to the ordering <., and Section 4
comprises the proofs of results appearing in Section 2.



2 Notation, definitions and main result

Let Ny denote N U {0} and let A be the space of all measures u on
R, = [0,00) such that u(B) € Ny for all bounded Borel sets B C Ry. N
has been shown to be complete and separable under the metric of vague con-
vergence (Grandell (1977)). Let B(N) denote the Borel o-algebra generated
by this metric. For any n € Ny let

m) = imt{t € Ry p(0,4]) > n},
where inf() = oo by convention. The measurability of the sets
No={p € N: Vi e Nr_1(u) <oo = 7ia(p) <m(p)}

and

o ={n € Mot ma(p) < oo}
is easily established. For our purposes, a “point process” will always re-
fer to a simple point process on R, which will denote a random element
N : (Q,F,P)— (N,B(N)) taking all of its values in Ny. For any {4, ..., t,
such that 0 < t; <ty < ... <t, <00, let

Foi1(ity, e tn) = Plrag1i(N) = To(N) < |1(V) = 11, oy Tu(N) = 1]

be a regular version of the conditional distribution of 7,,,1(V) — 7,,(N) given
71(N) =11, ..., 7, (N) = t,,. Furthermore, define A : R, x Ny — R, as

(e}

- thrinG)  dFg (2 — () (), - i)
SJiam 1= Fa((z —m(p) = ma (), o mi()
It is a well-known fact that A(-, N) : Ry x £ — R, represents a pre-
dictable version of the compensator of N adapted to N’s internal history
(Jacod (1975)). When, in addition, the function F,, 1(;t1, ..., t,) is absolutely
continuous V n € Ny and for all ¢4, ...,%, such that 0 < t; < ... <, < oo, it
has a density f,,1(-;t1,...,t,) and a conditional failure rate

fn+1<';t17 7tn)
Lt

7"”+1<'; tl, ceey tn) =

L L= Faa(it e ta)
of T 1(N) — 7(N) given 7(N) = t1,... (V) = t, (Kwieciiski and
Szekli - (1996)). The corresponding cumulative hazard function

Ro1(ity o tn) : Fo(itay oy 10)([0,1)) — R defined by
t
Ropi(tity, cntn) = —In(1 — F i 1(t; tq, o ) = / Try1(T; by, oy by )d.
0
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also exists. Moreover, under such conditions, A(-, u) itself is, V u € N,

absolutely continuous, and has a density A(-, u) which satisfies (Kwiecinski
and Szekli (1996))

At ) = ria(t — ()i (), o7 (0)) Limapyriga (o) (£)
=0

for all t € R, . It should be noted that A(-, N) : R, x 2 — R, U {oc} rep-
resents a predictable version of N’s intensity adapted to N’s internal history
(Brémaud (1981), Theorem I1L.7).

Kwieciniski and Szekli (1996) consider three partial orders on (N, B(N)) in

their definition of the self-exciting property, namely <y, <p and <. Let
wu,v € N. They write:

o 1 <y v if u(B) < v(B) for all Borel sets B C R ;
o 1 =p v if u((0,t]) <v((0,t]) for all t € Ry;

o /i < v if, V' n € N such that 7,,_1(u) < 0o, we have 7,_1(r) < oo and
Ta(V) = T (V) < Ta(p) — Tao1 ().

An important property of these three partial orders is that they are closed,
Le. if < € {<y, <D, <oo} and i, — iy U, — v (vaguely) in N while pu,, <
Vm ¥Y'm € N, then p < v. The closure of these orders follows in a straightfor-
ward fashion once it is noted that, if ., — u vaguely, then 7, (ttm) — 70 (Vin)
for all n € Nj.

We are now poised to introduce Kwiecinski and Szekli’s definition of the
self-exciting property.

Definition 2.1 Let N : (0, F, P) — (N, B(N)) be a point process on Ry
such that, Y n € N, t1,..,tn—1 € Ry with0 <ty < ... <tp_1, Ful-;t1, ey tuz1)
s absolutely continuous. Following Kwieciriski and Szekli:

1. N s self-exciting with respect to <y if, V u, v € No such that u < v,
there exist versions of M-, ), A(-,v) such that M\(-, ) < A(+,v);

2. N is self-exciting with respect to <p if Al-,u) < A(,v)V u, v e N
such that p <p v;



3. N is self-exciting with respect t0 <o if, ¥V p, v € No, tt <o V im-
plies that R, (t; (@), ooy To1 (@) < Ru(t;m (1), ooy e (V) VE € Ry,
n € N.

For the sake of brevity we shall henceforward write “KS-self-exciting”
instead of “self-exciting...in the sense of Kwiecinski and Szekli.” Stating the
alternate, more general definition of the self-exciting property will require
that a new concept be introduced. For any set A C R, x N, let A* =
{t € Ry: (t,n) € A}.

Definition 2.2 A subset A, ., of Ry x N, wheren € Ny and 0 <z <y <
oo, is called an echelon set if, ¥V u € N,

Ay =10 € Ryt (L) € Angy} = (Ta(p) + 2, 7(pt) + 9.

Echelon sets are notationally convenient tools used in comparing measures
over intervals of the form A%, = (7,(u) +z, 7, (1) +y]. The B(R,)x B(N)-
measurability of A, ., itself will never be invoked here, and is therefore
irrelevant. Echelon sets we shall henceforward mention are ones which, for

some closed partial order <, satisfy the property of “<-concordance:”

Definition 2.3 If < is a closed partial order on (N, B(N)), an echelon set
Ay 18 said to be <-concordant if, ¥ p, v € N§ such that pn < v,

M(Az,z,y) S V<A7l;,z,y)'
Given a closed partial order < on (N, B(N)) and a measure 1 € Aj}', the
value p(Af ) of the y-measure of the section (at ) of the <-concordant

set A, ., constitutes an “indicator” of how “big” u is in terms of <. The
self-exciting property may now be defined in general terms:

Definition 2.4 Let < be a closed partial order on (N, B(N)). A point pro-
cess N : (Q, F,P) — (N,B(N)) is said to be self-exciting with respect to
< if, for any <-concordant echelon set A, ., € Ry X N,

/A At ) < |, )

holds whenever u, v € N satisfy u < v.



From an intuitive standpoint, Definition 2.4 says that a point process
is self-exciting with respect to < if its dual predictable projection A(, N),
conditioned on the past of N being equal to the restriction of u to that past,
will reflect N’s tendency to be “as big as p” in the immediate future by
“measuring” A* in accordance with the size of pu.

n7z7y

Remark 2.5 The fact that the Lebesgue measure of a section A¥ . of Anzy

n7z7y

is always equal to y — x when p € N§, enables us to assert that under
Definition 2.4, a Poisson process of constant rate on R is, by the linearity
of its compensator measure, self-exciting with respect to all closed partial

orders on (N, B(N)).

A useful characterization of our definition of the self-exciting property is
obtained in the cases < = <y, < = <p and < = <.

Theorem 2.6 Let N : (0, F,P) — (N,B(N)) be a point process on R, .
Then:

1. N is self-exciting with respect to <y in our sense iff

/zyA(dt,u)g/zyA(dt,y)

holds whenever v <y in Ry, u <y v in Ny;

2. N is self-exciting with respect to <p in our sense iff A(-, ) < A(-,v)
Jor all i, v in Ny such that p <p v.

3. N is self-exciting with respect to <o in our sense iff for all n € Ny,
y >0 and p,v € N with i <« v we have

T (1) +y T (V) +y
[ A < [0 M)

n(#)

A pleasant consequence of Theorem 2.6 is that our definition strongly
resembles that of Kwiecinski and Szekli in the aforementioned three cases.

Corollary 2.7 Let N : (Q,F,P) — (N,B(N)) be a point process on
R, such that, for all n € N, t1,..,1,_1 € Ry with 0 < t; < ... < t,_q,
Fo(o;t1, oo tno1) is absolutely continuous. Then:



1. N is KS-self-exciting with respect to <y iff N is self-exciting with re-
spect to <y in our sense;

2. N is KS-self-exciting with respect to <p iff N is self-exciting with re-
spect to <p 1n our sense;

3. If N s self-exciting with respect to < in our sense, then N is KS-
self-exciting with respect to <.

The proofs of Theorem 2.6 and Corollary 2.7 constitute Section 4. Note
that, as explained in Section 3, the converse of part (3) of Corollary 2.7
does not hold. The reader should also be warned that, although y <\ v or
I <o v implies p <p v, counterexamples exist to show that, when <;, <»
€ {<n, <D, <o} and <1#£=2, N being self-exciting with respect to <; does
not imply that N is self-exciting with respect to <o — and this, even in our
sense. Corollary 2.7 permits us to use the counterexamples of Kwiecinski
and Szekli when <1 € {<), <p} (see the paragraph following Definition 4.1
of Kwieciriski and Szekli (1996)). Finally, Example 3.2 of the present note
shows that a point process may be self-exciting with respect to <, in our
sense without being self-exciting with respect to either <, or <p.

Kwieciriski and Szekli (1996) established the positive association of processes
they identified as self-exciting with respect to one of the three aforementioned
closed partial orders. We conjecture an extension, subject to some restric-
tions, of this result to point processes we define as self-exciting with respect
to an arbitrary closed partial order (Plante (1998)).

3 About the case <=<

One may ask whether part (3) of Corollary 2.7 has a converse, i.e., is a
point process KS-self-exciting with respect to <., necessarily self-exciting
with respect to <., in our sense? The answer is negative. It is known, for
example, that all renewal processes on R, which have absolutely continu-
ous interarrival distribution functions are, due to the mutual independence
of their interarrival times, KS-self-exciting with respect to <. (see the re-
mark following Lemma 4.2 of Kwieciriski and Szekli (1996)). They are not,
however, necessarily self-exciting with respect to < in our sense. As a mat-
ter of fact, the following theorem, similar to Lemma 4.2 of Kwiecinski and



Szekli (1996) on renewal processes that are self-exciting with respect to <p,
states that renewal processes which are self-exciting with respect to <, in
our sense, and satisfy certain regularity conditions, are time-homogeneous
Poisson processes.

Theorem 3.1 Let N : (Q,F, P) — (N, B(N)) be a renewal process on Ry
with an absolutely continuous lifetime distribution, and with o failure rate
r: R, — R, whose domain may be partitioned into a sequence {I,}>, of
intervals I, := |Gn, Gny1) With Gy 1 > G, and such that, ¥ n >0, r is strictly
increasing, constant, or strictly decreasing over I,. Then, N is self-exciting
with respect to <o n our sense iff N is a Poisson process of constant rate
T

Proof: Part (<) follows from Remark 2.5. Part (==) will be achieved
in three steps. Assume that N is self-exciting with respect to <, in our
sense. Since r is of bounded variation by hypothesis, we may, without loss
of generality, assume that 7 is right-continuous.

Step 1: r is constant over Iy = [ag, a1) = [0, ay).

Suppose that r is strictly increasing over . Let p <o v € Ny be such
that 7 (1) = a1, m(v) = a1/2, and 72(v) = a;. Then,

7o(p)+a1 a1 a1/2 70(v)+a1
/ Aldu, ) = / r(u)du > 2/ r(u)du = / A(du, v),
T 0 0 70

o(p) )

contradicting the hypothesis that N is self-exciting with respect to <. If
r is strictly decreasing over Iy, let u, {V,tnen in Ao be such that u <o vy
for all n € N such that 2/n < a1/2, that 7 (u) = a1/2, 7(p) = a1, and that
T1(vn) = 1/n, 72(vn) = 2/n and 73(v,) = a1 ¥ n € N. Then,

To(p)+a1 ai/2
/ ' Aldu, ) = 2/ r(u)du
T 0

o)

> /Oa1 r(u)du = lim (2 /Ol/nr(u)du + /()al_Q/nT(u)du)

n—oo

. To(v)+a1
= lim / A(du, vy),
70

n—aoo (l/)



which contradicts the hypothesis.
Step 2: r(ar) = lim,_+ r(s) = 7(0).

Suppose that r(a;) > r(0). By the right-continuity of r, there exists an
interval I = [a1,1) # 0 with I C I1 = [a1, a2) such that r(s) > r(0) Vs € I.
Without loss of generality assume that t—a; < a1—ag = a;. Let p <o v € N
be such that 7 (u) = ¢, 7(p) = a2 +¢ and that 7(v) =t — a1, (V) =t

Then,
7'0( )+t t a1 t
/ ' A(du,u):/ r(u)du:/ T(u)du+/ r(u)du
T 0 0 al

o(p)

t—aq a To(v)+t
>/ T(u)du+/ T(u)du:/ A(du,v),
0 0 (V)

contradicting the hypothesis.

Now suppose that 7(a;) < r(0). By the right-continuity of r, there exists an
interval I = [ay,t) # 0 with I C I} = [a1, az) such that r(s) <r(0) Vs e I.
Without loss of generality assume that t —ay < a; —ao = a1. Let p, {vn}nen
€ Ny be such that p < v, for all n € N such that 2/n < t — ay, that
T(p) =t —ay, () = t, and that 7 (v,) = 1/n, 72(vn) = 2/n, 73(v,) > t for
all n € N. We have that

To(p)+t t—ay a1
/ ' A(du,u):/o r(u)du+/0 r(u)du

o(p)

> /Otr(u)du = lim (2 /Ol/n r(u)du + /Ot_Q/n r(u)du)

n—oo

70(vn )+t
= lim A(du, i),

n—o0 TO(Vn)
contradicting the hypothesis. We conclude that r(a1) = r(0).
Step 3: r is constant over [y = |ay, az) (and therefore over Io U I4).
Suppose that 7 is strictly increasing over [;. There thus exists an inter-

val I = (a1,t) # 0 with [ C I; = [a1,az2) such that r(s) > r(0)V s € I.
Proceed as in the first argument of Step 2 to obtain a contradiction.
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Similarly, suppose that r is strictly decreasing over Iy = |ay, az). There
thus exists an interval [ = (aj,t) # 0 with I C [; = [ay,az) such that
r(s) <7 (0)V s € I. Proceed as in the second argument of Step 2 to infer a
contradiction. r is therefore constant over [;.

Steps 1, 2 and 3 establish that r is constant over [y U [;. Moreover, iterating
Steps 2 and 3 n times will yield that r is constant over fo U, U...U [, for all
n € N. Thus, the hypothesis implies that r is constant over R, = U,en/,,
entailing that A(-, N) : R, — R is constant with A(-, N) = r, which im-
plies, at last, that N is a Poisson process of rate » by Watanabe’s theorem
(Brémaud (1981), Theorem I1.5).

Q.E.D.

Although the class of point processes which are self-exciting with respect
to <, appears, in our sense, narrower than in the sense of Kwiecinski and
Szekli, one may also argue that our definition is more intuitive. Indeed, it
is difficult to construe renewal processes with strictly increasing failure rates
as being self-exciting with respect to any ordering. Kwieciniski and Szekli’s
definition of the self-exciting property affirms that such processes are self-
exciting with respect to <., while ours does not.

We conclude this section with an example that our class of point processes
self-exciting with respect to <« does not trivially reduce to Poisson processes
of constant rate.

Example 3.2

Let N : (Mo, B(N) NNy) — (N, B(N)) be a canonical (identity) point

process whose distribution admits an intensity A(-, N) given by

1
At p) = Tpens + | | ————— | V1| T
(1) = Tjpemu) [(TQW)_MM)) ] [t>72 ()]

for p € Ny, t € R,. Such a point process exists by Theorem 3.6 of Ja-
cod (1975). A simple, but lengthy, argument shows that

AMTa(p) +t, 1) < M7 (v) +t,v)

10



holds for all n € Ny, t > 0 and p <o v € N, whence it is clear that N
is self-exciting with respect to <, in our sense. N is not, however, self-
exciting with respect to <y or <p. Let u, v € Ny be such that 7 (v) = 1/10,
n(v) = 3/10, m3(v) = 2/5, 7(v) = oo; m(u) = 3/10, m=(u) = 2/5, and
T3(p) = oo. Observe that u <y v and p <p v. N is not self-exciting with
respect to <y because

2 2
/ A(dt,u):10>5:/ A (dt,v),
1 1

and N is not self-exciting with respect to <p because

2 2/5 2
/A(dt,u):/ )\(t,u)dtJr/ At )t = 16.4
0 0 2/5

3/10 2 2
>8.8:/ (v dt T )\(t,y)dt:/ A(dt,v).
0 0

3/10

4 Proofs of Theorem 2.6 and Corollary 2.7

A preliminary observation is required characterizing <-concordant echelon
sets in the cases <==<, <==p and <==< .

Proposition 4.1 Let A, ., be an echelon set. Then:
1. Apay is <nr-concordant iff n = 0;
2. Anzy 18 <p-concordant iff n = 0 and x = 0;

3. Ay 18 <oo-concordant iff x = 0.

Proof

1. If n =0, then V p, v € Nj = A such that u <y v we have u(Af,,) =
p((z,y]) < v((x,y]) = v(Ag,,), which implies that A, ., = Ao., is <~
concordant.

If n # 0, let v € N be such that 7,,41(v) = 7,(v) + y + 1 and 7(v) =
Tio1(v) + (@ +y)/2 for i > n+ 2. Construct u € N such that 7;(u) = 7:(v)
fori e {1,..,n—1} and 7;(u) = 7541 (v) for i > n. Then, clearly, p < v but

11



w(As ) > v(A; ) = 0. Therefore, A, ., is not <y-concordant if n 7 0.
2. If n = 0 = x, then V u, v € N = Aj such that yu <p v we have
(Aboy) = 1((0,y]) < v((0,y]) = v(Ag,,), which implies that A, ., = Ao,
is <p-concordant.

If n # 0, construct p and v as for (1). Then p <p v but u(A%, ) > v(A; ),
so A, ., is not <p-concordant if n /0.

Now consider A, ., = Ao, With z # 0. Let v € Ay be such that 7 (v) =
z/2 and 1(v) = y + 1; let p € Ny be such that 7(p) = (x + y)/2 and
() = 7(v) Vi > 2. Ags, is not <p-concordant because p <p v, while
WAL > (A,

3. If = 0, then V p, v € N such that u <o v we have u(Ah,,) =
(T (1), T () + 9]) < v((Ta), Ta(v) +9]) = V(A7 ). Therefore, Ay, ., =
Ap o,y 18 <so-concordant if z = 0.

If  #£0, let v € N be such that 7, 11(v) = 27.(V) + 2]/2, Tuie(v) =y + 1,
and 7;(v) = Ti—1(v)+1 for i > n+3; let p € Ny be such that 7,(n) = 7 (v) for @
€L .n}, Taga(p) = (V) + (2+y)/2, and 7i(p) = Tima () +[7:(V) = Tia (V)]
for i > n+ 2. Then u <o v but u(A4, ) > v(A;, ), whence A, ., is not
<so-concordant if x #£ 0.

Q.E.D.

Proof of Theorem 2.6

1. This is evident in the light of Definition 2.4 and the fact that <,
concordant sets are of the form A, ., = Ao, .

2. N is self-exciting with respect to <p in our sense iff, ¥V y > 0, and
for all g, v in Ny such that p <p v,

[ M) = [ A = Aty

0,0,y

gM%miﬁM%m/yAwm)

0,0,y

(2) follows.
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3. This is obvious if one considers Definition 2.4 along with the fact that
~<so-concordant sets are of the form A, ,, = A, 0,

Q.E.D.

Proof of Corollary 2.7

Recall that absolute continuity of the F, (-, t1,...,t,_1) is assumed.

1. Suppose that N is KS-self-exciting, i.e. that V u, v € Ny such that
p <y v, there exist versions of A(-, 1), A(-,v) such that A(-, ) < A(-,v).
Then, for any <-concordant echelon set A, ., = Aoy and for any p < v
in Vy we obtain

/Asg A<dt7u)/th,u)dtg/jA(t,u)dt/sm A(dt, v),

whence N is self-exciting with respect to < in our sense.

Suppose now that NN is self-exciting with respect to <y in our sense. Pick p,
v € Ny such that p < v. Since A(, ) and A(-,v) are absolutely continu-
ous, they are differentiable almost everywhere with respect to the Lebesque
measure. At a point ¢ of common differentiability the hypothesis that N is
self-exciting with respect to < in our sense entails

A<S7 /L) - A<t7 /L) m ng,s,t A<du’ /L)

A(LM):sligi s—1 :sli>t+ s—1
[ Aldu,v) _
< lim e T i Als,v) = Al v) = N(t,v).
s—tt S — t s—tt S — t

Since A(+, ) and A(+, ) act as densities of A(-, ) and A(-, ) respectively,
a classic result of real analysis implies that A(-, ) = A'(-, u) and A(-,v) =
N(-,v) almost everywhere. Thus, there exist versions of the functions
fn(s;t1y .oy t,) which ensure that A(t, ) < A(t,v) Vi e R,.

2. This is an immediate consequence of part (2) of Theorem 2.6.

13



3. Suppose that N is self-exciting with respect to <. in our sense. We
must show that, Vn € N,y € R,

Rn+1<y; Tl(:“)? o Tn(”)) < Rn+1<y; Tl(”)? o Tn(”))

whenever p <o v in Ny. Note that if 7,(¢) = oo or 7,(r) = oo, we may
attribute an arbitrary value to one side of the inequality. Suppose, therefore,
that 7,(1), 7.(v) < oo, i.e., that u, v € NJ. Let p/, ' € N be such that p/
<o V', that 7(¢) = 7(p), (V') = m(v) Vi € {1,...,n}, and that 7,1(1),
Tar1(V') > y. By hypothesis, for any <-concordant set A, ., = Anoy, We
have

T (1 )y

/Au' A(dwﬂl):/ A, p)du

7,0,y Tn (1)

B /oy P (0 71 () oo Ta(p) )

= R (y; (@) ooy (1)

< Rovi(y;ma(V), ooy (V)

_ /oy Trr1(u; T (V) ooy T (V) du

T (V') +y
:/ » Au, y’)du:/ - A(du, V).

n,0,y

The conclusion follows from the fact that

Rn+1<y;Tl<M)7 ey Tn(ﬂ)) - Rn+1<y; Tl(:u/)v ey Tn(:u/))

and
Ro1(y;m(v)y oy, Ta(v)) = Rup1(y; m(V'), ooy Ta(V)).

Q.E.D.
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