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Abstract

In this paper we investigate testing the null hypothesis Hy of no-change in the mean
of independent observations against the alternative Hf) of at most s changes in the
mean. We construct an s-parameter stochastic process and study the distribution of
its sup-functional to test Hy against H,(45)~ As a special case, the epidemic alternative
is investigated.

1 Introduction

We are to test the no-change in the mean null-hypothesis

Hy: Xq,...,X, are independent identically distributed random variables with
]EXi:/,LandO<02:VarXi<oo,1§i§n,

against the at most s changes in the mean (s € N,1 < s < n) alternative

Hj(f) . X1,...,X, are independent random variables and there are s integers
71 = 1i(n), 2 = Tn),....7s = Ts(n), 1 <71 < < <1 < o,
such that 3 = IEX; = -+ = EX, # e = EX 1 = - = EX,,
H2 — ]EXT1+1 - = ]EXTQ 7& H3 — ]EXTerl == ]EXTga ceey Hs =
EX, 1= =EX; #usy1 = EX 1= = EX,,and 0 < 0% =

VarX; <oo, 1 <i<n.

Change-point problems have been considerably studied in the literature from the para-
metric as well as the nonparametric point of view. In particular, the problem of at most
one (single) change in the mean (i.e., s = 1) has been investigated in detail (cf., for ex-
ample, Brodsky and Darkhovsky (1993) and Csérgé and Horvath (1988a, 1988b, 1997)).
In this situation it seems natural to compare the mean of the first k observations (before
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the change) to the mean of the last n — k observations (after the change), i.e., to study
functionals based on

1< 1 n n B
E;Xiimi:zkilx" B W(S(k)—ES(n)), 1<k<n,

where S(k) := 3¢, Xi.

Let us assume throughout this paper that the variance 02, 0 < 0% < oo, is known.
Otherwise, given Hp, it can be estimated in a consistent way. One can, for example, use
the sample variance, or the pooled variances as suggested by Csorgé and Horvath (1997,
p.70). They showed the consistency of the pooled variances in case of s = 1 and concluded
that this estimator is preferable to the sample variance. In case of testing for more than
one change, s > 1, a modified version of the pooled variances also seems to be superior.

Continuing with the latter stochastic process, we base a sequence of statistics on it,
namely we define

7O e |S(k) — £5(n)]

1<k<n %(1 — E)nl/QO' '

However, this sequence converges in probability to oo, as n — oo, even if the null hypoth-
esis of having no change in the mean were to be true. This problem may, for example, be
avoided by either considering the statistics

|S(k) — £5(n)|

2 o
TP = max
or
S(k)—£g8
T = 0l
N TE T 1 1/2
(n(l n)loglog%(l_%)) nl/'2g

Under the null hypothesis Hy Donsker’s invariance principle yields, as n — oo,

T 2, sup |B()], (1.1)
O<t<1

and, on account of Szyszkowicz (1996, 1997) (cf. Theorem 2.1.1 in Csorgé and Horvath
(1997)), as n — oo, we have

B(t
P g | B(t)] -

where {B(t);0 < t < 1} is a Brownian bridge. Rejecting Hy for large values of TTSQ),

respectively for those of T7§3), both tests are consistent for testing Hy against H1(41). Tests

based on TT(LQ) should be more powerful for detecting changes that occur in the middle,

namely near 4, than for the ones occurring near the endpoints 0 and n. On the other



hand, tests based on TT(L3) should emphasize possible changes near the endpoints, while
retaining sensitivity to possible changes in the middle as well.
Suppose we were to use the statistic TT(LQ) to test for more than one change-point, for

example, to test Hy against Hj(f). Immediately the following question arises: ‘Is TT(LQ)

consistent for testing Hy against HI(LXQ)?’. We shall see in Section 2 that the latter statistic

is consistent even when testing Hy against Hff).

However, from a theoretical point of view that may be of interest in studying the
performance (power) of the test statistics in hand, it seems to be more natural to construct
a 2-parameter stochastic process for the sake of testing for at most 2 changes in the mean.
This, in turn, leads to studying the functionals (statistics)

@ o 1S+ 25 S (k) — 2S()]

1<k; <kz<n nl2g ) (1.2)

as we shall do in Section 3.

2 Using T7§2) to test for multiple changes

The problem of testing for at most one (single) change in the mean via using TT(LQ) has

been investigated in detail. Its asymptotic behavior under Hy as well as under H1(41) is
already known (we refer, for example, to Csorgé and Horvath (1988a, 1988b)). However,
from a practical point of view, it seems to be natural to investigate its behavior under the

(s)

alternative H);  as well. As an example, we may think of s, the true number of change-

points, being unknown. Having in mind the latter example, for the sake of establishing

consistency of rejecting Hy for large values of T£2), it would be desirable to show that

( (2)

under H As ) for any integer s > 1, T2 converges in probability to oo, as n — oo.

To do so, we investigate the limiting behavior of #Tf) and state the following

theorem.

Proposition 2.1 Assume that HI(:) holds. If 7, = 1i(n) == [nAi], i=1,2...,5, 0 <\ <
Ao < - < Ag < 1, then, as n — o0,

St DD 850 ws, oy

T
where
me s+1
Uni g, (D)1= (Z()\i — Aim1)i — Amtumm) - t( DN = i) — umt+1),
0 i=0

with my == min{q : Ay <t < Agy1, where 0 = Ag < A1 <+ < As < Agy1:=1}, A1 :=0
and (o = 0.

To prove this proposition, we note that IES([(n + 1)t]) = > (1 — Tiz1)pi + ([(n +
D]~ Tong by 11 and EES(n) = thiol(Ti —Ti—1)fti, where 79 := 1 and 7541 := n. Applying
Kolmogorov’s SLLN we get the desired result.



We note at the outs that m; takes integer values from 0 to s, hence the limiting function
Uy Ay, 0 (1), 0 <t < 1, consists of s+1 different parts. Furthermore, it is easy to see, that
this limiting function is equal to 0 for all 0 <t < 1 if and only if y17 = po = - -+ = prsa1.

Assuming 0 < 0 < oo, Proposition 2.1 combined with (1.1) implies the consistency of

testing Hy against HI(:), s > 1, via large values of T#Q), namely

IP{Hy is rejected when using T7§2)|H1(45) is true} — L
A gimilar test that is based on large values of TT(L3) is also consistent when testing for

more than one change-point. Tables for the limiting distribution of TT(L3) under Hy may be
found in Eastwood and Eastwood (1998).

3 A test based on an s-parameter stochastic process

Although we studied in Section 2 the asymptotic behavior of TT(LQ) under Hf:) and showed
its consistency to test for multiple changes, this statistic was constructed in particular to
test for at most one change-point (compare the mean before to the mean after a possible
change). As mentioned earlier in Section 1, it seems to be natural to construct an s-
parameter stochastic process when s change-points are expected. We will do so by using
a geometrical argument.

For simplicity, let us first assume that we are testing for at most 2 changes. Consider
the linear function m(t) := ¢, t € R, which joins under Hy all the points (k, %]E{S(k)}),
k € N, if  # 0, and it joins all the points (k,IE{S(k)}), k € N, if p = 0.

Without loss of generality let us assume that ¢ = 1. Then we join in Figure 1 all
the points (k,IE{S(k)} ), £ € N, via the straight line m(t) = t. We pick one k1 €
{1,....,n — 2} and then one ko € {k; +1,...,n — 1} (We note that in Figure 1 we
may think of k1 and ks being defined as k1 :— [nt(lf H)] and ko :— [nt(Qf H)] respectively,
0< t(lfm) < t(Qﬁz) < 1). We draw a horizontal line starting from B := (0,IE{S(k1)}),
containing the point (k1,IE{S(k1)}), and with terminus C' := (ko, E{S(k1)}). We draw
a vertical line from the terminus and intersect the t-axis. We denote this intersection by
D = (ko, IE{S(0)}), where we define S(0) := 0. In this way we construct a rectangle,
denoted by ABCD (see Figure 1), where A := (0,IE{S(0)}), with length k2 and height
E{S(k1)}. We also draw a horizontal line starting from F := (k1, E{S(k2)}), containing
the point (k2, IE{S(k2)}), and with terminus G := (n, [E{S(k2)}). We then draw a vertical
line from the starting point and another one from the terminus, both intersecting the
t-axis at F := (k1, E{S(0)}) and H := (n,IE{S(0)}) respectively. Similarly, we construct
another rectangle, denoted by EFGH (see Figure 1), with length (n — k1) and height
E{S(k2)}.

Reflecting each point of the rectangle FFGH around the 45 degree line m = t, we
get the new rectangle BIJC', where B := (0,IE{S(k1)}) is the reflection point of E =
(k1,IE{S(0)}), I := (0,IE{S(n)}) is the reflection point of H = (n,IE{S(0)}), J =
(k2,IE{S(n)}) is the reflection point of G := (n,IE{S(k2)}) and C' = (ke, E{S(k1)}) is
the reflection point of F':= (k1, E{S(k2)}). This new rectangle has length k2 and height
E{S(n) — S(k1)}.
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Figure 1: A geometrical interpretation of IE{k2S(k1)+ (n —k1)S(ke) — k2S(n)} = 0 under
Hy.

Combining the two rectangles ABCD and BI.JC with each other, we have constructed
the rectangle AI.JD, which has length ko and height IE{S(n)}. Moreover, under Hy, the
new rectangle Al.JD has the same area as the sum of the two other ones, namely ABC'D
and FFGH. Consequently, we have that

ke X BAS(kD)Y + (n — k1) x B{S(k2)} — ko x E{S(n)} = O.

Thus, in principle, for each given ki and ko, 1 < k1 < ko < n, we constructed an
unbiased estimator of zero assuming that Hy is true. We may also say that, viewed this
way, testing for at most two changes in the mean results in comparing areas of three
different rectangles with each other.

Similarly, when testing for s changes, for each given ki, ko, ..., ks, 1 < k1 <
ka < -+ < ks < n, there correspond the s rectangles with endpoints (k;—1,E{S(0)}),
(ki—1, E{S(k)}), (kiy1,IE{S(k;)}) and (kiy1,IE{S(0)}), 1 < i < s, respectively, where
ko := 0 and ksy1 := n. Fach of these rectangles with length (kiy1 — ki—1) and height
E{S(k;)} has area (kiy1 — ki—1) X E{S(k:i)}, 1 < i < s, respectively, where ko := 0 and
ksi1:=n.

By reflecting appropriate parts of these (overlapping) rectangles around the 45 degree
line m = ¢ we can construct a new rectangle with endpoints (0,1E{S(0)}), (0,E{S(n)}),
(ks, JE{S(n)}) and (ks,IE{S(0)}). This rectangle, with length ks, height IE{S(n)} and
area ks X IE{S(n)}, has now, under Hy, the same area as the sum of the previous areas.



Consequently, for each given combination of 1 < k; < ko < -+ < ks <mn,

5

5
T on = Skt — kis)S(ks) — koS(n),

=1

with ko := 0 and ksy1 := n, is an unbiased estimator of zero under Hy. Moreover, let us
define

1
(56) ._ (5)
T = 1§k1<]g13?-(-<ks<n n3/2¢ Tkl’kQ’“"kS’"" (3.1)

Since T,if)kgksn is a linear combination of partial sums and ¢; = %, 1 <i<s, as
a consequence of Csorgd and Révész (1981, Theorem S.2.2.1 by Major (1979) combined
with (S.2.2.2)) under Hy, as n — oo, we have

T7S5) A ‘Z i+1 ( ) *tsW(1)7 (32)

0<t1<t2< <ts<1

with o := 0 and tsy1 := 1. Hence, the limiting distribution under Hy is defined via a
linear combination of a standard Wiener process {W(t);0 < ¢ < 1}. Producing tables for

the latter limiting function is desirable for testing Ho against HI(: .

To investigate the limiting behavior of TT(L5) under H1(48) we state the following theorem.

Theorem 3.1 Assume that HI(:) holds. Define to .= 0 and 541 :=
[nAi], i =1,2...,5, 0 <A < A <o < Ay < 1, then, as n — oo,

Similtivr —tim)S([(n + D)) — t:9(n) as, -

o f i =min) =

n

>V VRS W (1% 2 5
n
where
s me;
Urg Ngyoora b1y b2y bs) = > (Lign — ti—l)(Z()‘j = Ajm)y + (L = A, )Mmti+1)
i1 =0
541
*tsZ()\i*)\i—l)/iia O<ti <o < <ty <1,
i—0

with my; = min{q : Ay < t; < Agq1, where 0 =1 Ag < A1 < -+ < Ay < Asq1 = 1},
1<i<s, A1:=0 and puo :=0.

The proof is similar to that of Proposition 2.1. We note at the outs that the limiting
function @ix, ay..a.(f1.t2, ... ts), 0 <1 <t2 < -+ <ts <1, consists of s(s+ 1) different
parts. Furthermore, it is easy to see, that this limiting function is equal to 0 for all
O<thi<to< -~ <ts<lifandonly if u1 = 2 =+« = sy1.

Assuming 0 < 02 < oo, Theorem 3.1 combined with (3.2) implies the consistency of

testing Hy against HI(:), s > 1, via large values of Tf).



Remark 3.1 We succeeded in constructing the two statistics TT(LQ) and TT(L5) that can be
used to test for multiple changes in the mean. However, nothing is known about the power
of these two tests. It is expected that in most cases tests based on TT(L5) will perform better

than those based on TT(LQ) when testing Ho versus Hf). A numerical study is desirable, but

to do so, the limiting distribution of TT(L5) for different s > 1 under Ho has to be computed
first.

Remark 3.2 We note that for s = 1 the two statistics TT(LQ) and TT(L5) coincide and so do
of course their corresponding limiting results under Hy and H1(41) as well.

Remark 3.3 We also note that for each integer s > 1 the test based on large values of

the statistic TT(L5) is consistent for testing Hy against Hf:). Furthermore, in principle, for

each s we can compute the corresponding limiting distribution function of TT(L5) under Hp.
Hence, under Hy all tests based on them will reject HI(:), but under HI(LXS) for any fized s,
any of them might consistently pick up more than s change-points just as the test based on
T752). Therefore, it is not clear how to go about estimating the true number of change-points
via using tests build on TT(L5) for different s > 1.

4 The epidemic alternative

In the previous section we studied alternatives with at most s changes in the mean. As
a special case, we will test for two changes and will also require that the means before
the first and after the second change are the same. This kind of alternative, more or less
as formulated by Levin and Kline (1985), has been called the epidemic alternative, on
postulating that an epidemic state runs from time 71 through 7, after which the normal
state is restored as it was before time 71. Applications of this model in econometric context
are studied by Broemeling and Tsurumi (1987).

We consider the case, where we have an epidemic change in the mean as assumed in the
alternative Hj(f) below. In particular, we test the no-change in the mean null-hypothesis
Hy : X1,..., X, are independent identically distributed random variables with

EX;=pu and 0 < 0?2 =VarX; < oo, 1 <i<n,

against the epidemic change in the mean alternative

HI(LXQ) 0 X1, ..., X, are independent random wvariables and there are two integers
1 and 72, 1 < 1 < 12 < n, such that 1n = X, = -+ = FX, =
FEXr1 = =FEXn, po=FEX 1= =FX,,, FEX; # EX; 11 and

0<o?=VarX; <oo, 1 <i<n.

Nonparametric tests for epidemic alternatives were discussed in the literature in the
past two or so decades (cf. Csorgd and Horvéth (1997, Section 2.8.4) and Yao (1993) and
their related references).

Using the results from Section 3 we have that under Hy, TT(L5) = TT(L4) of (1.2) converges
in distribution to the supremum of a linear combination of a standard Wiener process



(cf. (3.2) with s = 2) and under HI(LXQ) it converges in probability to oo, since #Tf)
converges in probability to the supremum of the limiting function @x, ,(t1,t2) defined as

(Ao — A)ta(ur — pe), 0<ty <ta< A <A<,
((t2 A1 X )+ (g — tQ)Al)(ul —pa), 0<t <A <ty <A <1,
(Ao = A)(—1+ Lo+ t1) (1 — p2), 0<ti <A <A <tly<l,
(()\2 ) — (1 — o)ty — Al))(m — ), O<A <t <ty <A <1,
( (1= Xa)( )\1)+()\2—t1)(—1+t2+)\1))

(1 — MQ), 0< A <t <A<ty <1,
(1 —t1)(A2 — A1) (1 — p2), D<M <A<t <ta<l,

where 71 = [nA1], 72 = [nA2| and 1 # pio.

In case of p11 # peo the limiting function @y, z,(t1,%2), 0 < t1 < t2 < 1, as above
takes on negative as well as positive values and neither a maximum nor a minimum
is taken at the times of change (1,f2) = (A1, A2). Hence, estimating the two change-
points via, for example, the argument where @y, x,(t1,%2), 0 < &1 < t2 < 1, takes its
maximum in ¢; and fo will not give us a good estimator in general. This is due to the
fact that for 1 # p2 we have, for example, min{ax, x, (A1/2, A1), @x 2, (A2, (A2 +1)/2)} <
Ung ag (A1, A2) < max{iag a,(A1/2, A1 )x, a, (A2, (A2 + 1)/2)}. Therefore, the problem of
estimating the times of at most 2 changes still seems to be an open problem, even when
we restrict ourselves to the epidemic alternative.

Conclusion

Using a geometrical argument we constructed a statistic based on an s-parameter stochas-
tic process to test for s, s > 1, changes in the mean (cf. Section 3) and showed its
consistency. Furthermore, we showed the consistency for testing Hy against HI(:), s> 1,
when using a statistic which was originally introduced to test for at most one change-point
(cf. Section 2). As a special case we also investigated the so-called epidemic alternative
(cf. Section 4) and showed that even in this simplified case estimating the change-points
is not an easy task.
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