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Abstract

We study the asymptotic behavior of U-statistics based processes which can be used to detect
(multiple or structural) changes in the distribution of independent observations as well as independent
vectors. For these processes we prove invariance principles. We give an application to test for
(multiple) changes in the mean or in the variance.
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1 Introduction

The problem of abrupt parameter changes arises in many situations of daily life, as well as in a variety of
experimental and mathematical sciences. For instance, in archaeology, in econometrics, in epidemiology,
in nuclear physics, in medicine, or in quality control.

In practice, usually a (large) set of data is observed. Then a statistical test should determine whether
there was a change in the data or not. This set of data may be modeled by saying that we observe
independent random variables over a special period of time, hence via a random process. Then we wish
to detect whether a change could have occurred in the distribution that governs this random process as
time goes by.

We wish to study such phenomena in terms of special stochastic processes based on U-statistics.
It is needless to say that there are many other ways to study such phenomena. The construction of
these processes is such that statistical tests can be based on them for detecting possible changes in their
distribution.

As mentioned by Csorgé and Horvath (1988a), change-point problems have originally arisen in the
context of quality control, where one typically observes the output of a production line and would wish
to signal deviations from an acceptable output level while observing the data. When one observes such a
random process sequentially and stops observing at a random time of detecting change, then one speaks
of a sequential procedure (e. g., stop a production line, if a specified percentage of the output is not
good). Otherwise, one usually observes a change in a chronically ordered finite sequence for the sake of
determining possible change(s) during the data collection (e. g., check whether a production line produced
reasonable output or not). Most such fixed sample size non-sequential procedures are described in terms
of asymptotic results (‘infinite’ sample size, i. e., n — c0).
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Depending on whether the distribution of the data is assumed to be known we use either parametric
or non-parametric models. For parametric models we refer to a survey of Csorgd and Horvath (1997) at
the end of the first Chapter of their book. For non-parametric cases we refer, for example, to Brodsky and
Darkhovsky (1993), Csorgd and Horvath (1988a, 1988b, 1997), Erasmus and Lombard (1988), Szyszkowicz
(1992, 1998) as well as to their bibliographies.

We now state the problem of testing for a change in the data in a more mathematical way. Suppose
we would like to test the null hypothesis

Hy : Xy,..., X, are independent identically distributed random variables

against the alternative that there is at most one change-point in the sequence X1, ..., X,;, namely that
we have

ngl) : Xq,..., X, are independent random variables and there is an integer 7, 1 < 7 < n,
such that P{X, <t} = = P{X, <t}, P{X;1, <t} =+ = P{X,, <t} forallt and
P{X, <ip} # P{X, 1 <t} for some tg.

This means that we are testing, for having n independent random variables belonging to the same
distribution, versus the first 7 ones belonging to the same distribution and the last n — 7 ones to a
different one. Therefore, for each 1 < k < n, we will compare the first k& observations to the last n — k
ones by using a bivariate function h(z,y) that is often called the kernel function in the literature on
U-statistics (cf., for example, Koroljuk and Borovskich (1994) and Serfling (1980, Chapter 5)).

Tests for at most one change-point which are based on processes of U-statistics were first studied
by Csorgd and Horvath (1988b, 1997). They investigate the asymptotic properties (as n — co) of the
U-statistics based process

Zy = > > AX,X;),  1<k<n, (1.1)
1<i<k k<j<n
where the kernel k(z,y) is either symmetric, i. e.,
hz,y) = hly,z), for all =,y € R, (1.2)
or antisymmetric, i. e.,

h(z,y) = —h(y, z), for all z,y € R. (1.3)

2
Typical choices for (1.2) are zy, #, @ (sample variance), |z — y| (Gini’s mean difference), or

sign(z +y) (Wilcoxon’s one-sample statistic) and those for (1.3) are (x —y) or sign(xz —y). In particular,
2
we will use (mgy) to detect changes in the variance, (z — y) to detect changes in the mean, and % to
detect changes in the mean and/or variance.
Csorgd and Horvéath (1988b, 1997) give various asymptotic distributions of the U-statistics based

process {Z;,1 < k < n,} under the null hypothesis Hy and the alternative ngl) for symmetric and
€3]

antisymmetric kernels. They also give tests that can be used to consistently reject Ho against I, .

)

However, instead of the alternative H ' of at most one change, we can also consider a more general

one that allows at most s change-points (s € N) in the sequence X1, ..., X, namely that we have
HS) : Xq,...,X,, are independent random variables and there exist s, 1 < s < n, integers
n=mn),n ="mMn),..,7%m="1[0n),1<n<n<. <715 <mn, such that
P{X, <ty=- =P{X;, <t}, PiXr, 1 <t} = = P{X,, <t}, ..., P{X, 11 <
ty = = P{X, <t} for all t and IP{X,, <to} # P{X,, 41 < to} for some ty and for

alll <i<s.



We note that the alternative H( *) allows us to consider random variables X1, Xo, ..., X, with s changes
in the distribution, which do not necessarily result in (s + 1) different distributions.

Since we are interested in testing for at most s, 1 < s < n, changes it seems natural to define a
sequence of stochastic processes depending on s parameters. To construct such processes we split the
given sample X1, ..., X,, into (s+ 1) blocks and compare each of the blocks with the others via the kernel
function k(z,y) as in (1.2) or (1.3) respectively. Since, out of s, we always compare two blocks with each
other, we have (SJQFI) different possibilities to do so.

Therefore, for the problem in hand, we define a sequence of s-time parameter stochastic processes as
follows:

k1 ko n
L prhe = Z( Yo X X)b Y h(X X )
i=1  j=ki+1 F=het1
ko k3 n
T (Z (X, X;) +ZhXZ,X)
i=k1+1  j=ko+1 J=ks+1

+ Z Z h(X;, X;)

i=he 141 j=k+1

s ki1

Z Z > 2. hlXiXy),

km—1+1ll=mj=ki+1
1<k <k < v < ks <m, (1.4)

where ko := 0 and ks11 := n. In this way we compare the (s+1) blocks (X1, ..., X&) (Xg 11,5 Xk )5
s (Xk. 41, -, X,) with each other, where the k;’s, 1 <¢ < s, vary fromi ton+i—1—s.
When testing for at most one change, this process reduces to
ki1

1 1
T = > > h(Xi, X;)

li=ky—14+1 1=1 j=k;+1

ko

kl n
= Z h(Xi, X;), 1<k <mn,
i=1j=k1+1

which is the stochastic process from (1.1) introduced by Csorgé and Horvath (1988b, 1997). When
testing for at most two changes the process in (1.4) reduces to

2 ko 2 kiyl
Zage = 2, DL 2. 2 MELX)
m=1 l=m j=ki+
k1

i=Epy 141
k
S Y (Y A Y ) Y S k)
i=kotl J=kitl J=ko1 i=k1+1 j=ho+1
k n
- Zl: Z h(X“X Z Z szX 1<k <ky<n.
=1 j=k1+1 i=k1+1j=ko+1

We study Zg, kg,... ke 1 < k1 < ko < --- < ks < n, under the null hypothesis Hp in Section 2, and
under the alternative hypothesis Hf) in Section 3 when the kernels are both, symmetric and antisym-
metric. Since many practical situations can be modeled via random variables, the main part of this paper
focuses on them.



However, we note that throughout this paper we can exchange the random variables X1, ..., X, by
random vectors X7, ..., Xyn, where X; € R%, 1 <1i < n. The following theorems hold in this case as well,
but for proofs we need to apply the corresponding results by Koroljuk and Borovskich (1994, Chapter 5)
who investigate U-statistics for random vectors. Random vectors in the theory of U-statistic processes
were, for example, also used by Gombay and Horvath (1999).

2 Asymptotics under H

Throughout this paper let ko := 0, k1 :=mn, to == 0, ts41 ;== land k; = [(n+ 1], 1 < i < s

Furthermore, let us assume that

]Ehg(Xl, Xg) < o0, (21)
and define 6 := FEh(X1, X5) and h(t) .= IE{h(t, X,) — 6}. In addition, let us also assume that
52 :=Eh*(X,) > 0, (2.2)

which, as a consequence of (2.1), is finite as well. Since EZy, x, ., = > i (kiy1 — ki)k:0, we define
the centralized process

S

Uk kg, by = Zhy g, by — Z(kH»l —ki)ki0, 1<k <ko< - <ks<n,

i=1
where the kernel function h in Zy, k... r, is symmetric. Since § = 0 for antisymmetric kernels, we define
in this case

Ukihoyhe = Zhikoyker 1< ki <ko <. <kg<n.

Although Uy, k, . . itself is not a U-statistic, we can write it as the sum of (s 4 2) U-statistics (with
missing normalizing factor), and thus for 1 <k < kg < -+ < ks < n we get that

Un ks = USTD — (O + U2+ 4+ UETY), (2.3)
where
1 kl
Ulgl) _ Z h(Xi, X;) — (2)0,
1<i<j<ky
v = h(X;, X;) — Fa =k
kl,kz Z 3 7 2 9
k1 <i<j<ksg

E *ks
S - (7, )

ke<i<j<n
U2 XX — ("o
n Z (X“XJ) 2 0
1<i<j<n

Consequently, Ukl,kz,...,ks can be written in a similar way when we put 6 = 0 in (2.3). For further use
we also define the sequence of s-time parameter stochastic processes

1
Un(ti,ta, ... ts) = mU[(n+1)t1],[(n+1)tg],...,[(n+1)ts]7 0<ty <lg <ovr <t <1
and
_ 1 .
Un(ti,ta, ... ts) = mU[(n+1)t1],[(n+1)tg],...,[(n+1)ts]7 0<ty <lg <o <ts < 1.



Furthermore, we note that the upper index *¥™ first used in Theorem 2.1 symbolizes that the herein
defined Gaussian process corresponds to the case where we have a symmetric kernel. In case of an
antisymmetric kernel, as in Theorem 2.3, we will use the upper index ¢ instead.

Using the previous assumptions and notations we arrive at the following theorem, when the kernel is
symmetric.

Theorem 2.1 Assume that Hy, (1.2), (2.1) and (2.2) hold. Then we can define a sequence of Gaussian
processes {5V (b o, ..., t5),0 <& <tg-- <ty <1}uen such that, as n — o,

sup |Un(t1,t2,...,ts)7Fflym(t1,t2,...,t5)| = Op(l),
0<ty <tg <o <ts <1

and, for each n,

{5 (1, e, .., 15),0 <ty <ty <ty <1}

DT (b by, 1),0 <l <ty < < 1Y, (24)

where the Gaussian process 'Y s defined via a linear combination of a standard Wiener processes W
as follows:

S

D™ (b by, ts) = Y (fips + iy — 26)W (&) + 6 (1),
i=1
0<ty <ty <ty <1, (2.5)

where ty == 0 and t441 = 1.

Proof. As a consequence of Hall (1979, Theorem 1) we have

k1
o s
1o e |V T Z;h(XZ) Ort)
@ €
2 7 _
oo U, — (b — ) ;lh(Xz) = 0p(n),
i=k1
(s+1) ~ oval L
B S L e G Y ';:Hh(Xz) Op(n),
‘U,gs“) nS h(X)| = Op(n).
i=1
Hence, via observing that
n kl kz n ~
ny h(X;) - (m STh(X) 4 (ky— ki) Y X))+ (n—k) Y h(Xz))
i= i=1 i=ki+1 i=ks+1
s ki B no
= > (kipr ki —2k) > h(X;) + ks Y R(X)),
i=1 j=1 i=1
we have that
s k; n
Vrn By | Uik, (Z;(k”l ki1 = 2ki) - P(X5) + ks Z;h(Xi))‘
1= J= 1=
= Op(n). (2.6)



We note at this point that while the U-statistics in the latter statements are sums of identically, but not
necessarily independent, distributed random variables, they are approximated by sums of the independent
and identically distributed random variables h(X1),. .., h(X,).

Furthermore, we use the fact that we can define a Wiener process {W(¢),0 <t < co} such that (cf.
Csorgd and Révész (1981, Theorem S.2.2.1 by Major (1979) combined with (S.2.2.2))), as n — oo,

. MCERCE
WOEQ‘E ; h(Xi)fW(nt)‘ — op(1).

Hence, bounding above supg.y, «¢y<...cr.<1 OY SUPocy;<1, 1 <G <08, then we also have, as n — o0,

[(n+1)t;]
sup - Z iL(Xi)—W(ntj)‘ = op(1), for j=1,2,...,s. (2.7)

N2 0ot cty<ict <110 pa
Thus the result follows from (2.6) combined with (2.7). Obviously (2.5) is a Gaussian process and (2.4)
holds true as well when we replace, for example, W(:) in (2.5) by % to define T'5¥™(+). O
Clearly, in case of at most one change, namely when s = 1, Theorem 2.1 reduces to Theorem 2.1 of
Csorgd and Horvath (1988b). Tn this case T*¥™(¢1) = (1 — 261 )W (t1) +£. W (1), 0 < ¢, < 1. When testing
for at most two changes, namely s = 2, then TS (¢, to) = (tg —2t1 )W (£1) + (1 -+t — 2t9)W (i9) + 12 W (1),
0<t; <ty <1,

As an immediate consequence it is easy to see that the Gaussian process from (2.5) satisfies the
following:

Lemma 2.1 For0 <t <ty---<t, <1 we have

U™ (b1, ty, ..., ts) = 0

?

S

2
E(Fsym(tl, to, ..., ts)) = (1 —tip1 + ) (L1 — ),
i=0
s s
ETSym(tl,tg, ceey tg)FSym(Tl, T9,... ,Ts) == ZZ(tH,l - 2tz + tifl)(TJq,l - 2Tj
i=1 j=1
s—1 s s—1 s
—+ ijl)(ti A Tj) —+ 2t5(ZTi+1Ti — ZT?) —+ 2Ts(zti+lti - Zt?) + 3t57“5,
i=1 i=1 i=1 i=1

where tg =10 :=0 and ts41 = 1541 = 1.

Theorem 2.1 can now be used to test for multiple change-points. This is due to the fact that under

Hy

D
sup |Un(t1,t9, ..., ts)| — sup [T (ty, g, ..., Es)]- (2.8)

0<ty <to <o <te <1 0<ty <tp < <te <1
Hence, this consequence of Theorem 2.1 allows us to produce tables for the limiting distribution in (2.8)
and reject the null hypothesis of no-change for large values of the supremum of |U, (1, to, ..., t5)|.
Since Theorem 2.1 holds for any integer s, 1 < s < n, we are in the position to construct statistics
which converge under Hj in distribution to the sup-functional of the corresponding s-time parameter
Gaussian process. Hence, we can combine statistics for different s and arrive at the following theorem.

Theorem 2.2 Assume that Hg, (1.2), (2.1) and (2.2) hold. Then we can define sequences of Gaussian
processes {5V (1), 0 < t1 < 1}, {D5¥™(t1,10), 0 <ty < to <1}, .o, {T0™(t,lo, ..., L), 0 < 1 <



to << <t <1, 1<s<n } such that with the sup-FEuclidean norm we have, as n — 00,

(U’n(tl)v Un(tlvtg)v ceey U’n(tlvtgv e 7ts))

2, (FSym(tl),FSym(tl,tg),...,FSym(tl,tg,...,ts)),

where for eachn and 1 <1< s
{9 (Lo, .., 13),0 <ty <tg--- <ty <1}
2D (b, 1), 0 St Sty <1 < 1

Proof. Let (z1,79,...,75)T be an s-dimensional vector € (0,1)° C R® and define the sup-Euclidean

norm

T
| = sup  \fairad et al
O0<zy <z <<z <1

|| (xlv X, . ..,y 1135)
Then with Theorem 2.1
T
H(Un(tl)—Fflym(tl),...,Un(tl,...,ts)—FfLym(tl,...,ts)) H

< /s sup { max |Up(ty, ... 6) — T8 (61, ..., 1)
0<ty <tg<---<ty<l L 1<i<s

} — op(1).

This implies that we have componentwise convergence in distribution of the U,’s to the appropriate

I'*¥"™’s using the appropriate norm. O
Similarly, as in case of symmetric kernels we can proceed in case of antisymmetric ones. However, we

note that the corresponding limiting results are different.
Theorem 2.3 Assume that Hy, (1.3), (2.1) and (2.2) hold. Then we can define a sequence of Gaussian
processes {T%(t1,t0,...,15),0 <t <ty <ts < 1}pen such thatl, as n — oo,
sup |Un(t1,ta, ... ts) —T%(t1, tg, ..., t5)] = op(1),

0<ty <ty <o <L <1
and, for each n,

{FZ(tlthP "7ts)70 < ty < tg--- < ts < 1}

AT (bt 8),0 <ty Sy <t <1,

where the Gaussian process I'* is defined via a linear combination of a standard Wiener process W as

follows:

S

Tty by, ots) = Y (tips — ti )W (k) — W (1),
o 0<ty <tyeee <ty <1, (2.9)
where ty ;=0 and t541 = 1.
Proof. The proof is similar to that of Theorem 2.1. Instead of Theorem 1 of Hall (1979) we use Theorem



2.1 of Janson and Wichura (1983), which implies

k1
71 9 XY =
1§k1§lﬂgl§---§k5§n Uy, ;(kl 2i + Dh(X;) Op(n),
(2) S
~(2 . = B
1§k1§lﬂ}?§---§k5§n Ukth - Z (ko + k1 —2i+ DR(X;)| = Op(n),
i=k1+1
(s+1) & o9 7 ) _
rem 2O = Y (ks = 204 DA(X) Op(n),
i=kat1
TE =N "(n— 20+ DA(X;)| = Op(n).
i=1
Hence, via observing that
n ~ kl ~ kg ~
3 (n 20+ 1DA(XG) (Z(k1 “2 DX+ Y (ka + ki — 20+ DR(X))
i=1 im1 i=k1+1
ISR (n+ks—2i+1)1}(xi))
i=kat1
s k; ~ n_
= > (hiyr ki 1) Y R(X;) — kY R(X),
i=1 j=1 i=1
we have that
s k; n
X |, (Z;(km ki) 1h(Xj)kSZ;h(Xi))\
= J= 1=
= Op(n). (2.10)

Now (2.10) combined with (2.7) yields the desired result. O

Clearly, in case of at most one change, namely s = 1, {T'*(¢;),0 < #; <1} is a Brownian bridge and
Theorem 2.3 reduces to Theorem 4.1 of Csorgé and Horvath (1988b). When testing for at most two
changes, namely when s = 2, then T'%(¢1,19) = oW (t1) + (1 — t1 )W (t2) — taW (1), 0 <4y <9 < 1.

We mention that the Gaussian processes I'* from (2.9) and T'*¥" from (2.5) are different and for
0<t; <ty <---<ts <1 their relationship is as follows:

S

Tty tg, ... ts) = TV™(ty,tg, ... 1)+ 2(2(@ —ti)W(t) — tsW(l)).
i=1
Furthermore we note that the Gaussian process from (2.9) satisfies the following:
Lemma 2.2 For 0 <t <ty---<t, <1 we have
BTty by, ... t,) = 0,

2 S
E(F“(tl, to, ..., ts)) = > (1 tigr ) (i — ta),

=0
s s
Ma(tl,tg, ceey tg)Fa(Tl, T9,... ,Ts) = Zz(ti+l — tifl)(TJq,l — ijl)(ti A Tj)
i=1 j=1

- tsrsv



where tg =10 :=0 and ts41 = 1541 = 1.

The computation of the covariance is straight forward. We note that

S

Z(TH»l*Tifl)Ti = Ts.

i=1

When using antisymmetric kernels then Theorem 2.3 implies that under Hj

sup 1T (t, to, .. )] — sup ID9(ty, to, ... 1)), (2.11)
0<ty <to <o <te <1 0<ty <tp < <te <1
Moreover, this allows us to produce tables for the limiting distribution in (2.11) and reject the null
hypothesis of no-change for large values of the supremum of |U,, (t1, s, . .., t5)|.
Similarly to Theorem 2.2 we get the following when combining statistics used to test for a different
number of changes s, 1 < s < n.

Theorem 2.4 Assume that Hy, (1.3), (2.1) and (2.2) hold. Then we can define sequences of Gaussian
processes {U'4(11), 0 <ty <1}, {T8(t,t2), 0 <ty <to <1}, oo, {Te(ti,ta, ... 1), 0< 8 <tg < ...
<ts; <1,1<s<n } such that with the sup-Fuclidean norm we have componentwise convergence in
distribution, namely, as n — co,

(Un(tl),Un(tl,tg),...,Un(tl,tg,...,ts))
2, (F“(tl),ra(tl,tg),...,Fa(tl,tg,...,ts)),
where for eachn and 1 <1< s
U9ty to,y .. 1), 0 <ty <ty < t; < 1}
PAr(ty,ty, .. )0 <ty Styee < t; <1}

The proof of this theorem goes along the lines of the proof of Theorem 2.2 via using Theorem 2.3 instead
of Theorem 2.1.

3 Asymptotics under HS)

In this section we study the limiting behavior of the proper normalized stochastic process Zy, ,,.. k.
from (1.4) under the alternative of at most s changes. Its limiting function will depend on the location
of the change-points 71 = [rA1], 72 = [nA2], ..., 7s = [RAs], 0 < AL € Ao < -+ < Ay < 1. However, it will
involve many variables, since we have to handle all possible combinations of ¢;’s and A;’s. In particular
the limiting function consists of (225> different parts, since there are (225> possibilities to choose %4, . ..,
given the postulated change-points Ay, ..., As.

Let Fi(t) = P{X, <t}, Fo(t) = PP{Xr 41 <t}, F3(t) =TP{Xr,41 <€}, ..., Fs1(t) = P{X, 11 <
t} be the respective distribution functions of the observations before the first, between the first and
second, between the second and third, ..., and after the s-th change respectively, and put

]Eh(Xza XJ) = 0q+1,r+17

where 7, <@ <7541 and 7 < j < 7qq for all 0 < g < r < 5, and where we define 79 := 1 and 7,1 :=n.
(s)

We also assume under [~ the existence of first moments, namely

IER(X;, X;)| < oo, 1<i<j<n. (3.1)



Furthermore, we put

7= [pA], 0< A <A< <A <
For the sake of strong laws, we use a weaker assumption than a finite second moment of h, namely that
for random variables from different distributions the following holds:

E{|h(Xr,. Xry1)|logt (JR(Xr,,, Xr1)])} <00,  1<m<I<s, (3.2)

where log" z = log(zV1). Since we do not know in advance the location of the s possible change-points,
we define for technical purposes

1, 0<z< A,

2, A<z < A,
I(z) =

5, Asm1 < 2 <Ay,

s+1, s <2<,

which will be used to remind ourselves of the location (either before the first or between the first and
second or between the second and third or ... or after the last change-point) of a block of r.v.’s which
does not contain any change-point.

When looking at the definition of Zy, 5, . x,, 1 <k < ko < ks <nin (1.4), we see that we may
split it into many double sums, where each of these double sums is of the form

Z Z (X, X;), (3.3)

i=a+1 j=c+1
where 0 < a <b<c<d<nand a,b,c,d € N. These double sums may be associated with comparing
the two blocks (Xy41,...,Xp) and (Xo41, ..., Xy4) with each other. In the case of testing for s changes,
we have to compare each of the blocks (X1,..., Xp, ), (Xky41s--»Xko)s - s (Xpotts---»Xn) with each
other. Of course, each of these s+ 1 blocks may contain up to s change-points, if, for example, the others
have none. Hence, we consider double sums as in (3.3), but we split each of the sums into s+ 1 sums to
avoid summing over two blocks with a possible change-point inside, namely

b d Ys+1
>, 2 hXeX;) :(Z )DIEINID SN Z)(Z
i=a+1 j=c+1 i=a+1 i=y1+1 i=ys—1+1 i=7s+1 Jj=c+1

Ys+2 Y2s
+ > et YD Z ) (Xi, X;),
J=vs+1+1 J=v2s—1+1 F==vy2s+1

(3.4)

Whereo§a<’}/1S’YQS"'S’YsSbéc<75+lS’Ys+2§"'§725§d§n~

Consequently, we are comparing blocks with each other that do not have a change inside. When
using (3.4), the double sum in (3.3) is split into (s + 1)? double sums. Again we emphasize that there
are at most s changes in total which implies that some of the new small blocks may be viewed as bigger
ones, since there is no change inside the blocks, nor in between them.

As an example, consider the case where we have (s—2) changes in block (X1, ..., X3) and 2 changes

in block (Xc+1, ..., Xq) then (3.4) reduces to

Ys—2 Ys+1
>y XwX:(Z )DIESRED S Z)(Z
i=a+1 j=c+1 i=a+1 i=y1+1 i=ys—1+1 i=7s—2+1 Jj=c+1

Ys+2

Y Z ) (X, X;),

J=Ys41+t1l  j=vs42+1

10



where the blocks (Xoy1, ..., Xqp), (Xyi01, -0, Xon)s s (X a1y oo o, Xp) and (Xeqn, -0, X)),
(Xyepihts s Xyeya)s - or (Xqeyat1, - oo, Xg) do not contain a change-point.
Each of the (s + 1)? different double sums in (3.4) is of the form

S % )

i=Ri1+1j=Rs+1
where 1 < Ry = Ry(n) := [nr1] < Ry = Re(n) := [nra] < Rz = R3(n) := [nr3] < Ry = Ra(n) = [nry] <

n are chosen properly according to the double sums in (3.4). Furthermore, we can prove the following
lemma.

Lemma 3.1 Assume that (1.2) or (1.3), (3.1) and (3.2) hold. In addition assume that either Hy or H(S)
holds and that the two blocks of independent random variables (Xpr, 141, -5 Xpryl41) and (X[nrs]Jrl:
ooy Xppragt1)s 1 <[] < [nrg] < |nrs] < [nry] < n have distribution function F and G, respectively
(We note that the case of F = G is included as well). Then, asn — o0,

1 [nra] [nra]

Gmkwmwm%mDE: D hXLX) T O (3.5)

i=[nri]+1j=[nrs]+1

Proof. This is an immediate consequence of Theorem 1 for generalized two sample U-statistics by Sen
(1977), and Hoeffding’s Strong Law of Large Numbers (1961) for two samples from the same distribution.

Note that the double sum in (3.5) may be associated with comparing the two blocks (Xg, 41, ...,
Xr,) and (Xg,41,-..,Xg,), where [nr;] = R;, 1 < i < 4, with each other, where both do not have
any changes inside. If both belong to different distributions, then Theorem 1 of Sen (1977) applies,
and (3.5) follows immediately. On the other hand, if both belong to the same distribution, then we may
consider the two blocks as one large block. We do this by deleting everything between these two blocks.
We therefore consider the block of i.id. rv.’s Y = (Y, 41 = Xg,41, Ye,42 = Xgi42, -+, YR, =
Xbo: Yio1 = XiRg—(Ro—R) 1115 Yhov2 = X[Ro—(Ro—Ro) 12y -+ Y[R (Ra— o)) 7= X[ra— (5 — k). We
may then use Hoeffding’s SLLN, but first we have to write the double sum in (3.5) in terms of U-statistics
(with missing normalizing factor). Hence, we now write

Ry R4a—(R3—R2)

SOY hEx) = S Y hvyy)

i=Ri1+1j=Rs+1 i=Ri+1 j=Ro+1
= > hYuYy) — Y (YY)
Ri<i<j<Ra(Rs—R») Ri<i<j<Rs

- > h(Y,Y;),

Ry <i<j<R4—(R3—Rs)
= AW A 4B
and
D
> h(Y,Y;) = > h(Y:,Yy),
Ry<i<j<Rqs—(R3—Rs) Ry <i<j<R4—(R3z—Ra)—(R2—FR1)

for each fixed n. Using now Hoeffding’s SLLN, we get the following convergence results for the U-statistics
Aﬁf), Aﬁf) and Aﬁf’), as n — oo,

Agll) P (ra—(r3—r2)—r1)?
- 2 01(7“2):1(7“4*(7“3*7“2))7

AR, (rog —71)?
— #@@2),1(“7@342)),

AD  p (ra —(r3 —r9) — (ro —711) —11)?
2 ‘> 2 01(7“2):1(7“4*(7“3*7“2))'

11



Hence, as n — o0,

Agll) 7A512) 7A513)

5 — (ra —73)(r2 — T1)010r) i (ra—(ra—r2))

n

and, therefore, (3.5) also holds, if two different blocks have the same distribution. Note that O1r0),i(re) =
O1(r0),1(ra—(rs—ry)) When using the block of i.i.d. r.v.’s ¥.O
Similarly to (3.4), define now

5(331, L5492y L5435 L2544y L2y L3y« ooy Lsp1y Ls44,Ls45y- -+, 3325+3)
[(nt+1)zsy2] [(n+1)zosq4]
= E E h(Xi, X;)

i=[(nt+ D)z 41 j=[(n+Dzeqs]+1

[(n+1)xs] [(n+1)zs] [(n41)zay2] [(nt1)zsta]
ST >HET SRR SR >
i=[(n+D)z1]+1  i=[(n+1)zo]+1 i=[(n+l)zs1]4+1 j=[r+1)zsqs]+1
[(nt+1)zsys] [(nt+1)z2ays] [(nt+1)z2sta]
+ s Y X )h()g,)gg
J=lnt+1)zspal+l J=ln+)z2s2]4+1l  j=[(n+1)m2sys]+1

st+1 2543 [(m+D)zpa]  [(nt+1)wgt1]

=5 55 VD S SN E B!

p=1 q=s+3 i=[(n+1)z,+1 j=[(n+1)z, |+1

where 0 < 27 <29 €23 < -+ < g0 < Toyz < Tspq < Toys < - < Togpg < 1. Moreover, since this
is a sum of many double sums, (3.5) can be applied many times and as n — oo we have the following

convergence in probability result, namely

Fs(xlv Ls+2,Ls+3; L2544, L2, L3y - -3 Lst1, Lst4; Ls45y-- -, $25+3)
P
- 77(9317 L5492, Ls+3; L2544, L2, L3, - -y Lst1, Lst4; Ls5y-- -, $25+3)
25+3 s+1
= E (xq+1 - xq) E (xp+1 - xp)el($p+l)7l($q+l)' (36)
g=s+3 p=1

We note that if 0;(,, ,,),1(c,,,) = ¢ for all possible choices of r and ¢ then n(z1, Tst2, Tst3, Tast4, Ta, T3,
ey D1, Tshd, Tstby - ooy T2543) = (Tosta — Tst3) (Ts42 — x1)0. Tt should be clear that xo, ..., Tsy1
and Tst4, ..., Tast3 are dummy variables used to obtain the limiting result in (3.6).
We are now in the position to go back to the definition of Zy, x,. 1., 1 < ki <kg o <k, <n
in (1.4), and write it in terms of double sums S(-) as above. Thus, for 0 < #; < -+ < ts < 1, we obtain

S S
Zlnt Dt L4 Dtalyers [(nb Dts] = ZZ S(tj—1,ts, ti, tig1, 2,23, ..., Top1,
i=1i=j
$5+4, $5+5, R $25+3),

where we define 5 :=0 and 544 1= -

Since we do not know the location of the change-points [nA1], [nA2], ..., [nAs], where 0 < A; < Ay <
-+ < As < 1, we define the following functions a;, 1 <4 < (s+1)s, which will be used to derive a formula
for the limiting function of (1.4) that will allow us to handle all possible combinations of Ay, ..., As and

12



t1,...,ts. Hence, we define

Ai—m-s, I <AL S A2 < S Niomes Sl
At mesr AL Sbn <A <A <ot S Agytymes < b,
a; = (3.7)
As, AL <A < S A1 St < As S,
Cq, otherwise

with m := (({ —1) mods), to == 0, =1, 0 < a; <ay < < agsys <1 and ¢ € [0,1],
1 <i<(s+1)s. We note that the ¢;’s have to be chosen such that (ai)gfil)s is an increasing sequence
and ¢; # A;, 1 < j <s.

We need to define these a;’s, 1 <i < (s + 1)s, since there are exactly (s + 1)s possibilities to place s
change-points in (s + 1) blocks. Moreover, exactly s of the latter a;’s will change to one of the values A;,
1 < j < s, while the other s? a; ’s will get the value ¢; and they will drop out of the limiting function
Uxy A, ns (15 Toy o, t5) as defined below. The latter arguments yield the following theorem.

Theorem 3.1 Assume that (1.2), (3.1), (3.2), and H,(:) hold. Define to == 0 and ts11 = J5. If
n=m(n):=[nXN],i=1,2,...,8, 0< A <X < - < X, <1, then, as n — 0,

1 P
S 2D Dt [t D] T WAL A A (t1,to,. .., ts),

where for 0 <t <ty <--- <ty <1

S S
Un poh (B1a T2y ts) = E E N1, t5 by L1, Qs 1) 415 Gs(G—1)425 - - - »
i1
As(j—1)+s)Asit+1l, Asi+2, - - - 7asi+s)7

and 1 and the a;’s, 1 <i < s(s+ 1), are defined in (3.6) and (3.7), respectively.

In particular, when we replace assumption (1.2) in Theorem 3.1 by (1.3), then the theorem is the same

except that 61, = -+ = 0,541,541 = 0 and 0441 41 = 0, whenever the two blocks of random variables
Xegtty ooy Xryyy and Xo 41, ..., Xr |, have the same distribution.

We observe that if 6; ; = 0 for all possible choices of 1 < ¢ < j < s+ 1, then ux, »,,.. A, (t1,t2,...,1s)
= Z;:l(tj+1 —1;)t;0, which is the limit (n — 00) of the expected value of 5 Zj(, 1)t [(n+1)ta],....[ (0 1)to] -
Moreover, it follows that under the null hypothesis Hy of no-change n—12U[(nJrl)tl]’[(n+1)tz]7___7[(n+1)ts] =0.
Assuming that 6; ; = 8 = 0 for all possible choices of 1 <7 < 7 <n, the sequence

1
T, = sup U[(n+1)t1],[(n+1)tg],...,[(n+1)ts] , n€N,

n3/2G o<ty <ty<-<t <1
is not consistent against any class of alternatives. On the other hand, if at least one 8, ; is not equal to
0 and we use T,,, then
P{H, is rejected when using Tn|Hj(45) is true} — 1.
n—oo
This implies that the limits of the sequence {7}, }nen are different in probability under Hy and HS),
and hence we have consistency of {7}, }neN-

The limiting function ux, x,,...x. (t1,t2,...,ts) in Theorem 3.1 looks quite complicated, hence we give
some examples when s = 1 and s = 2 respectively.

13



Example 3.1 Let s =1, A := Ay and t := ¢;. We observe that

A, 0< AL,
ay = .
¢y, otherwise,
and
A, <AL,
a9 = .
co, otherwise.

When 0 < ¢ < A then we have by Theorem 3.1 that

n0,t,t,1,e1,A) = (A —t)(c1byery, i) + (E— 1)y in))
+ (=M (ebien ) + (8= )i im),
where {(t) = l(c1) = I(A) =1 and {(1) = 2, and when A <t < 1 then
00,4, 6, 1,0, ¢2) = (e2 = )Nien) ien) + (8= Nbie) ucer))
+ ()M + (- Mo aa));
where I(A) =1 and I(ce) = I(t) = (1) = 2. Consequently, we have that

1, PLoun(t) — tA =)0 + (1 — A)01 9, 0<t<A,
2 21t (=N =)o+ (1 —1)A1 9, A<T <],

and under Hj it converges in probability to zero. This coincides with Theorem 3.1 by Csorgé and
Horvéth (1988b) where the case of at most one change-point is investigated.O
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Example 3.2 Let s = 2. We observe that

)\17 0 < )\1 S tlv
a; =
! ¢y, otherwise,
Ag, 0< A < Ag <y,
a =
? co, otherwise,
A1, 1 <A <o,
az = A, A<t <A <y,
c3, otherwise,
Ag, t <A <Ay <y,
ay =
* ¢4, otherwise,
A1, g <A <1,
as = Az, AL <ilp <A <1,
c5, otherwise,
and
Ag, ty <A <A <1,
ag =
¢ cg, otherwise.

Then by Theorem 3.1 we have under HS) that

P
a7 U,

= 1(0,t1,t1,t0,a1,a2,a3,a4) +1(0,t1,12,1,a1, a2, a5, a¢)
+ 7ty to, ta, 1, a3, ay, as, ag) =

15



((fz — )t + (A — t2)t2)01,1 + (A — Aq)tab o

+ (1 —Xg)tab 3, 0 <ty <ty <A <Ay <1,
(M —t1)tbh g+ ((fz — At + (Ae — tQ))\l)el,Q

+ (T =X)Ab 34+ (Ao —to)(ta — Ay )b 0

+ (1 —=X)(ta — A1)bs 3, 0 <ty <AL <ty <Ay <1,
(M —t1)t161 1+ (A — M)t 2 + ((1 — Aoty

o h) tg))el,g (e — A~ t)00s

+ (ta— Xo)(1 —t2)05 3, 0<t; <A <Xy <ty <1,
(Ag —t1)A1b1 2 + (()\2 —t1)(t1 — A1)

+ (t2 —t1)(Ag — tz))ez,z + (1 —X)(ta — A1 )ba3

+ (1 —X)Ai01 3, 0< A <ty <ty <Ay <1,
(Mg — t)M 0o + (1 — ANy 015 + ((1 “ )t — M)

+ (Ao —t1)(1— tz))ez,s +(t1 — A )(Ag —t1)0s 9

-+ (tg*)\g)(lftg)a‘g’g, 0< Al <ty <Ag <ty <17
(1 —t)Mb1 3+ (1 —t1)(Ag — Ay )ba3
n ((1 )t Ae) (1 o) (ts — tl))0373, 0< A <A<ty <ty<l,

and under Hy it converges in probability to zero.O

4 Testing for changes in the mean

We are to test the no-change in the mean null-hypothesis

Hy : Xq,...,X,, are independent identically distributed random wvariables with EX; = p and
0<o?=VarX; <oco,1<i<n,

against the at most s changes in the mean alternative

HS) : Xq,..., X, are independent random wariables and there are s integers m1,7To, ..., Ts,
1< <7 <. <75 <n, such that EX, = - = EX,; # EX; 1 = - = EX,,
FEXryw = =FEX,; # EX;ypp1 == FEX+, ..., EXs, |11 = = EX., #
EX, 1= =IEX,,and0<o?>=VarX; <oo,1<i<n.

Let h(x,y) = x — y, then after some calculations (1.4) can be written as

S

Tyhoks = _(hig1 — ki 1)S(ki) — ks S(n),

i=1

where kg := 0, ksy1 :=n and S(k) .= Zle X;. We note that the same process was obtained by Orasch
(1999b) using a geometrical argument instead of using U-statistics based processes. Furthermore, with

¢ := g, Theorem 2.3 yields, as n — oo,

1

D
sup —7 ‘Zkl,kg,...,ks — sup Dty to, ..o ts)]s
0<ty <tg <<ty <1 N/ 20 0<ty <ty <<t <L
with 5 := 0 and #s41 := 1, and where the limiting process I'*(¢y, to, ..., t5) is defined in (2.9).
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5 Testing for changes in the variance

We are to test the no-change in the variance hypothesis

Hy : X1, ..., X, are independent identically distributed random wvariables with EX; = p and
0<o?=VarX; <oco,1<i<n,

against the at most s changes in the variance alternative

HS) : Xi,..., X, are independent random variables and there exist s integers 7, To, ...,
T, 1 <1 <719 <0 <71 <, such that VarX, = ... = VarX, # VarX, {; =...
=VarX,,, VarX, 1 =... =VarX,, #VarXp1=... =VarX,, ..., VarX,_ 11
=...=VarX, #VarX. 41 =... =VarX,,0< Vaer, VarXe 41, VarX 41, ...,
VarX, 41 <oo, and EX; = - =FX, =p

Let h(z,y) = 1(z —y)?, then after some algebraic manipulations, Zx, k,,.. . in (1.4) can be written as
1 S
VT T 5 (;(kwrl + ki1 — 2ki)R(ki) + ksR(n)

- 22 S(hi-1))(S(n) — S(k)));

where ko := 0, k1 = n, S(k) = f 1 X; and R(k) = Zle X?. Assume that ER?*(X1, X3) =
LE(X: — p)* +3(0?)? is finite and 62 = +Var((X; — p)?) is positive. Then we have by Theorem 2.1, as
n — oo, that under Hy

=1
4

1 2
sup ‘Zk N 1 —
0<ty <t <<t <1 713/20 n Z o
S
D
— sup ‘ Z(ti+1 + tz’,1 — 2tz)W(tz) + tSW(l) 5
O<ti<tr<-<ts<1 | =
with t5 := 0 and ¢,4; := 1, and where the limiting process is the same as T'*¥"™ (i, to, ..., t5) from (2.5).

6 Testing for changes in mean and/or variance

We can base tests on the statistics considered in the previous sections to test for changes in the mean
or changes in the variance, separately only. Frequently, it is of interest to be able to test for changes
in both the mean and the variance. It turns out that this is not an easy task in general. Based on
U-statistics-type processes, here we propose a statistic where tests can be based on, that will test for
changes either in the mean or the variance or both. Unfortunately, in the following setup we are not able
to distinguish between changes in both and changes in only one of them. Nevertheless, this test can be
used when both depend on each other, namely the mean changes if and only if the variance changes. In
case of independent normal variables Gombay and Horvéath (1997) proposed an estimator for testing one
single change in the mean and/or variance using the likelihood ratio test.
We are to test the no-change in the mean and variance hypothesis

Hy : X1, ..., X, are independent identically distributed random wvariables with EX; = p and
0<o?=VarX; <oo,1<i<mn,

against the at most s changes in the mean and/or variance alternative
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HS) : Xi,..., X, are independent random variables and there exist s integers 7, To, ...,
T, 1 <11 <1 < ... <75 < n, such that EX, = ... = EX, # EX; 41 = ...
= EX,, and/or VarX, = ... =VarX, #VarX, 1 =... =VarX,,, EX, 1 = ...
= EX,, +# EX;,,1 = ... = EX,, and/or VarX, 1 = ... =VarX,, # VarX,, 1
= ... =VarX,, ..., EX; ,q1= ... = EX., # EX, 1 = ... = EX, and/or
VarX,, . qy1=... =VarX, #VarX, 1 =... =VarX,, and 0 <VarXy, VarX, 41,
o, VarX, 11 < oo.

Since under Hy

EX? = VarX;+ (EX;)? 1<i<n,
it is reasonable to consider symmetric kernels of the form
22 4y
hz,y) = —

Consequently, under Ho, h(X;, X;) is an unbiased estimator for § = p? + o2. Tt is obvious that changes
in it or 02 or in both will change 6. By using this kernel function, we can not distinguish which parameter
changed. Nevertheless it may be used to detect, if there were any changes at all in any one, or in both

of these parameters.
To apply our theory on U-statistic based processes, we assume that under Hy

1
Er*(X;, X;) = §Var(X3)+(/,L2+02)2 < oo,

and put
h(t) = E{h(t, X)) — (1° +02)}
— o).

Furthermore, we also assume that under H,
~ 1
72 = BA (X)) = ZVar(Xf)

is positive and finite. Hence, after some algebraic manipulations, Zy, x,,.. k. in (1.4) with the kernel

from above can be written as
S

Lhi ko, by = Z(kH»l + ki1 — 2k;)R(k;) + ks R(n),
i=1
where ko := 0, ks11 :=n and R(k) := Zle X?2. By Theorem 2.1 we have that under Hy, as n — oo,

1
= ‘Zkl,kg,...,ks — (12 +02)Z(ki+1 — ki)k;

sup —
3/25
O<ti<ty<-<to<1 1%/ P}

?

D, sup ‘ S (b + b - 26)W(H) + W (1)

Oty g < <l s <1 i—1

with t5 := 0 and ¢,41 := 1, and where the limiting process is the same as T'*¥"({y, to, ..., t5) from (2.5).
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