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Abstract

At time O there are N particles located at the origin 0 € IR?. They execute independent
Brownian motions and, at a certain time 2, they either die or split with probability 1/2.
Right after time ¢ the new particles continue to execute independent Brownian motions,
independently from those of their ancestors, up to time 2¢, when they again repeat the
just formulated process. This process will be called pre—super Brownian motion.

We conclude a time sequence of exact distribution functions for the most-right vertex
of the quadrant in R¢ that is determined by the surviving particles, as well as an asymptotic
form of these distributions when ¥ = N~!, and N — oo. We also prove a strong theorem
when v =1 and N — oc.
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1. Introduction

In this paper we investigate the following

MODEL

(i) N (N =1,2,...) particles start from the position 0 € R? and execute N independent
Brownian motions (Wiener processes) Wy(t), Wa(t),..., Wy (t) (Wi(t) e R, 0 <t <
o0, i1=1,2,...,N),

(ii) arriving at time t = ¢ to the new locations Wi (¢), Wa(v), ..., Wn(2), they die,

(iii) atdeath they are replaced by Z1, Zs, ..., Zy offspring (respectively), where Z1, Za, ...,
Zy are ii.d.r.v.’s (also independent from W;(¢t) (i =1,2,..., N)) with

P{Z =0} =P{Z =2} =,

(iv) each offspring, starting from where its ancestor dies, executes a Brownian motion
(Wiener process) (from its starting point, between ¢t = ¢ and t = 2¢) and repeats
the above given steps. Wiener processes and offspring-numbers are assumed to be
independent of one another.

Let

(a) B*(t,¢,N) (t = 0,%,2%¢,...) be the number of particles living at time t = @), the
particles born at time i¢) to be counted as being alive at time 4¢, but not at time
(i + 1)7, i.e., to begin with, for i =0, 1, respectively, we have

B*(0,9,N) =N,

N

P{B*(¢,¢,N) = 2k} = <k>2—N (k=0,1,2,...,N),

(b) B(t,?,N) (t =0,%,2¢,...) be the number of those particles (among the N ancestors)
which have at least one living offspring at time ¢, i.e., to begin with, at times t = 0, ),
respectively, we have

B(0,%,N) =N,

N

P{B(,¢¥,N) =k} = <k>2—N (k=0,1,2,...,N).

Clearly, for any t > % we have

0< B(t,w,N) < N, B*(t,%,N)> 2B(t, ¢, N),
{B<tv¢vN) = 0} = {B*<tv¢vN) = 0}7

(c) Xu1,Xi2,.... X+ t,p,n) be the locations of the particles at time ¢ in R?,
(d) MA,t,9,N):=4#{i:1<i<B*(t,¢,N), Xy € A}, where A is a Borel set of R¢,
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(e) A(z):={ye R?:y <z}, x € R?, where z <y is meant to be a componentwise
inequality,

(f) )‘<x7tv¢v N) = )‘<A<x)vtv¢v N),

_ AMat!/2,t,v, N)
€ Fet e N TNy

(h) Xu = (Xu(1), Xe(2), ... Xu(d), i=1,...,B*(t,0, N),

(i) M= 1§i§TBIl*aE§w7N)Xti<€)v (t=1,2,...,d),

(G) M(t) =Mt ¥,N):= (Mu, Mg,...,Ma),
(k) Mz, 9, N) = P{M(t) < zt'/? ‘ B*(t,¥,N) >0}, t=0,9,2¢,....

M (t) will be called the most-right vertex of the quadrant determined by the points
Xy (i=1,2,...,B*(t,%,N)) in R% We call the sequence A\(A,t,¢, N) (t = 0,%,2¢,...)
of random measures a
(i) critical branching Wiener process if » = N =1 (cf. [4]),
(ii) pre-super Brownian motion if ¢y = N=1 (N =1,2,...) (cf., e.g., [1], [2], [3], for a more
detailed description and study of this kind of branching diffusions).

For the sake of simplicity, in case

(i) ¥ = N =1, we omit the variables ¥, N, ie. we write A(A4,t,1,1) = A(A4,1),
B*(t,1,1) = B*(t),..., etc.,

(i) ¥ = N, we omit %, i.e. we write A(A,t, N"1,N) = X(A,¢t,N), B*(t, N"1,N) =
B*(t,N),..., etc.
In Section 2 we collect some known results on the case ¥ = N = 1. Section 3 is

devoted to a study of the case ¢ = N~!. In Section 4 we prove a strong theorem when
¥ =1and N — oo.

2. Critical branching Wiener process

Lemma 2.1 ([4]) For anyt=0,1,2,... we have

EB*(t) =1, (2.1)
E(B*(t))* =t+1 (2.2)
tlirglo B*(t)=0 a.s. (2.3)

Lemma 2.2 ([5]) Foranyt=0,1,2,... we have

2 2
< p:=P{B*(t o< ——.
t+2+2logt+1) B0 >0t = 355




Theorem 2.1 ([5])
(i) My(z) converges weakly to a distribution function M(x) ast — oo,

(i) for any 0 < R < 1 there ezists a C = C(R,d) > 0 such that

1 /1 1 z? z? z?
=z _ = _Z V<1 = < _z
o <x x3>exp< 2) <1 ./\/lt(x)_C'eXp< 5 +(log:Jc)R>

foranyt>0, x>1,
(iii) for any 0 < R < 1 there exists a C = C(R,d) > 0 such that

1 /1 1 2 z’ a?
o <5—?>exp <—7> <1-M(z) < Cexp <_7+ <1ng)R> (2.5)

forany x > 1,

(iv) M(-) is a solution of the integral equation

Fla)= [ [ (P2 =)o (u)duda. (2.6

where

6uly) = (2m(1 — a)) "2 exp (—ﬁ) ,

with ¥ := (y,y), and M(-) is the only distribution function which satisfies (2.5) and
(2.6).

3. Pre-super Brownian motion

In the light of the MODEL (cf. our Introduction) and the results quoted in Section 2, the
next two lemmas are immediate. Hence we state them without proof.

Lemma 3.1 N
P{B<t7¢7N) = k} = <l€ >pf/¢<1 _pt/w)N_k
(k=0,1,2,...,N, t =1,2¢,...), where the sequence {p.} is defined in Lemma 2.2.
Lemma 3.2
M(te,e,1) 2 ¢2M(¢8,1,1),
My (2,9,1) = My(z,1,1),
{F(z,t,¢,1), —00 < z < oo} 2 {F(z,t,1,1}, —00 < z < x}.
Theorem 3.1

1
1— (1 — Dt/

N

Mi(z, ¢, N) = 5 [(1 — Py (1= M) — (1 —pryy)™ (3.1)

4



(t=1,20,...).

(t.¢,N) < at'/?,B(t,%:,N) = k | B(t.¢,N) > 0}

2 M

Proof.
:P{ ( ¥, N) < at'/? | B*(t, ¢, N) > 0}
N

- P{B<t,¢1, N) >0} kzl P{M(t,%;, N) <at'/* | B(t,v, N) = k}P{B(t,¢, N) = k}
1

= BB 0N 5 0 2 M D PIBE Y ) = k)

1
P{B( Y, N) > 0}

B Z (M (z < >pf/¢(1 _pt/w)N_k,

Z (Mejy(@,1,1)) P{B(t. %, N) = k}

which implies (3.1).

Theorem 3.2 Lett =ty (N =1,2,...) be a sequence of positive numbers for which
Nty — 00 as N — oo. Then we have

My(z, N" N~ <eXp <M> _ 1> (N = o0), (3.2)

e2/t —1 t

where M(z) is defined in Theorem 2.1.

Proof. (3.2) follows from (3.1) and (2.4).

62/3_ 1 <eXp <2Mt<x)> - 1> o M(z) (t— o).

Remark 2. Let z = z(t) > 0 be a function of ¢ for which t "' M(z) — cc as t — 0. Then

g (o0 () 1) xp (FELEMEY,

—9(1 — M(z))
t

Remark 1.

Hence

My(z, N~1, N) ~ exp < > (t — o),



provided that
Nt —oo and t ' M(z)— oo,

as N — oo and t — 0. For example, if

1\ /2
x = <2(1i€)1og¥> ,

then by (2.5)

5152

1 — M(z) ~ C(d)exp <—3> = C(d)t'*e.

Consequently,
M ((2(1 £ e)logt) /2, N7L N) ~ exp(—2C(d)t*).

On combining Remarks 1 and 2, we conclude
P{M(t,N"',N) < at'/? | B*(t, N"',N) > 0} — M(x)
as N — oo and t — o0, as well as
P{M(t, N1, N) < (21 £ e)tlogt™)¥? | B*(t, N"1,N) > 0} ~ exp(—2C(d)t*®)

as N — oo, provided that t — 0 and Nt — oc.

4. The case ¢ = 1; a strong theorem for pre—super Brownian
motions

Theorem 4.1 Letty and zny (N =1,2,...) be sequences of positive integers such that,
as N — oo,
t=ty oo, N My]l0 and z=2zn517 .

Then
2N

My(z,1,N) ~ exp <—T

(- Mt<x>>) . (1)

Proof. By Theorem 3.1 and (2.4) we have

Mt<:L‘, 1, N)

N ﬁ [<1 _ % (a —Mt@)))N - <1 - %)N] |

Since, as N — oo,



and

we obtain

Hence we have (4.1).
Corollary 4.1. Let

t=ty =N 0<a<l, and z=zy = (28logN)"?, 3>0.

Then, as N — oo, we have
My(z,1,N) ~ exp (— O(l)Nl_o‘_ﬁ) ,
and, with € > 0,
P{M(t, 1,N) > (2t(1 — o+ ¢) log N)W}
~1—exp(—O(Q)N"°) ~O(1)N"",
P{M(t, 1LN) < (2t(1 — o — &) 1ogN)1/2}
~exp (— O(1)N®).

(4.2)

(4.3)

Now we consider a sequence of pre—super Brownian motions with ¢ = 1 as follows. We
let a pre-super Brownian motion starting with N initial particles from the origin 0 € RY,
run up to time N. Then we start an independent critical branching Wiener process from
the same origin at the same time. Combining these two independent processes yields a
pre—super Brownian motion with N + 1 initial particles starting from the origin up to time

N + 1. In this context, the main conclusion of this section reads as follows.

Theorem 4.2. We have

_ M(N*,1,N)
lim s = a.s
N—=oo (2(1 —a)N@log N)
forany 0 <a < 1.
Proof. (4.3) clearly implies that
lim inf M(N®,1,N) >1 a.s.

N—oo (2(1 — a)Nelog N)¥? ~

7
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Let Ny = k¥, K > e~!. Then, by (4.2), we have

lim sup M(NZ. 1, Ne) 77 <1 as. (4.5)
k—oo (2(1 — )N log Ni)

Considering now Ny < N < N1, we arrive at
M(N®1,N) < M(N*,1,N,)+ M*(N“, 1, Npy1 — Ni), (4.6)

where M* is obtained a la M from the Nj 1 — N independent critical branching Wiener
processes that are added after time Ny to the pre—super Brownian motion starting with
Ny, initial particles. In view of (4.5) it is easy to see that we have

lim su MN?, 1, Ni) <1
9] sup 172 > a.s.
k—oco Np<N<Npii1 (2(1 — Oz)No‘ log N)

and
. M(N“1, Nip1 — Ni)
imsup sup e = 0 a.s.
k—oco Np<N<INpyq (2(1 — Oz)NO‘ log N)

Consequently, via (4.6) and (4.4) we arrive at Theorem 4.2.
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