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Abstract. Here we study three kinds of branching models. In particular, the critical branching
Wiener process and what we call the pre—super Brownian motion are conveniently dealt with via
a simple branching Wiener process. Our main interest is to describe the asymptotic nature of
distributions of the respective locations of particles that are produced by these processes.
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1 Introduction

In this paper we deal with three kinds of branching models of interest. One of these is the critical
branching Wiener process, while another one is what we call the pre—super Brownian motion (cf.
also [2]). We have found it convenient to study these two via a model that we call a simple branching
Wiener process. Hence, we first describe this model, that will be our

Model I Simple branching Wiener process

Let
{Unk, kE—1,2,...,2" 1 n:1,2,...}

be an array of independent, uniform—[0,1] r.v.’s. Introduce the following notations:

Viin = U,
Vor = ViU,
Voo = Vi1Usg,
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Vn,?k—l — Vn—l,kUn,Qk—h
Vn,?k — Vn—l,kUn,2k7 (k — 1727“.7271—27 n—= 2737"')7
Yoo — 07

Yoo = 1V, (k=1,2,...,2" 1, n=1,2,..)).

Yo ok—1 and Y, of are called the daughters of Y,,_1 ;. or, equivalently, Y;,_; j(x11)/2) 15 the mother of
Yok The array {Yog, k=1,2,...,2"71, n=1,2,...} is the family—tree of the offspring of Yo;.
Let
U%m)k:LZHWTA;n:LZ”}

be an array of independent JR¢ valued Wiener processes on [0, 1], which is also independent from
the array {U,}, and introduce the following notations:

Hyi(t) = Wn(t) if 0<t <Y,

H (t) o Hll(t) 1f0§t§Y11,
21 N Hii(Yin) + Wor(t — Yi1) if Y <t < VYo,

H (t) - Hn(t) if0<t <Yy,
> N Hy1 (Y1) + Waa(t — Yi1) if Y11 <t < Yoo,

H (t) o Hn—l,k(t if 0 <t< Yn—l,k7
m2h—l B Ho 1 6(Yno1 ) ¥ Whop—1(t —Yaoax) i Yo <t < Yook-1,
H (t) o Hn—l,k(t if 0 <t< Yn—l,k7

T Huap (Yoo 1) + Waan(t — Yocag)  if Yaoa gy << Yok,

(k=1,2,...,272, n = 2,3,...).
Let A(t) (0 <t < 1) be the set of those (n, k) pairs of integers (k — 1,2,...,2" 1, n = 1,2,...)
for which
Y1ty S Yk >t

and let
Q) = {an(t) $Yae >4 Yoo [(kr1y/2) < t} = {Hni(t) : (n, k) € A(D)},
Fi(R) = #{(n,k): Hui(t) € Qt)N R},

where 0 < ¢t < 1, and R is a Borel subset of IR?. Furthermore, we introduce the family of empirical
(random) measures

Fy(R) = (1 = 1)F(R),
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and with
R.={y:yc R, y<ul,

we write
Fy(x) = Fi(Ry).

The latter is is the main object of our study in the first four sections.
Let P be the space of finite measures on JR? with the Lévy—Prokhorov distance p(-, -).
Our main result in this model is Theorem 1.1, that will be proven in Section 3.

Theorem 1.1. With any w € (1/2,1) we have
P {EI v € [u, 1) such that p(F,(-), F,(+)) > 4(1 — u)l/(d+3)}

d
< 2d+2 (10g - 1 ) (1 _ U)l/(d+3)-

Consequently there exists a P valued random measure F' such that
P {EI v € [u,1) such that p(F,(-), F(-)) > 4(1 — u)l/(d+3)}

d
) (1 u)M/@+9)

—
and

limsup(1 —u)" V43 p(F,, F) <4 as.
ull

We note that the so far defined r.v.’s and processes define (live on) a probability space (2, A, P),
which is also that of Theorem 1.1.
Let A C P be a Borel set and define the probability measures

w(A) = P{F.() e A}, O0<u<l,
p(d) = P{F()€A}.

Let M be the set of probability measures defined on P. Further let p be the Lévy—Prokhorov
distance on M.
Theorem 1.1 clearly implies

Theorem 1.2. We have

1 d
d+3 o\ 1/(d43)
Pty 1) <2 (log;1 u) (1—u)
if u>1/2.
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Our next goal is to study the properties of the limit measure p.
Let

B(r){FEP: dF(a:)#O}

T(r)

where

T(r) = RN [, r]%

In Section 4 we establish the following three theorems.

Theorem 1.3. We have

p(B) < exp (50 202)

if r > 1. Furthermore,

M{FZ/ dF(a:)<t}1e_t, t >0,
R

and

2

where u* = (u, u).

Theorem 1.4. Let Iy and Iy be P-valued i.i.d. random measures with distribution u, and let

T2 /de/ ( ( ij) + P (W)) aly)dady, = € R,

2
o —d/2 Y d
Pa(y) = 2ma) exp( _2a)’ O<a<l, yelR

where

Then 1 is a P-valued random measure with distribution .

Theorems 1.3 and 1.4 describe two sets of properties of p. Our next theorem claims that these
two sets of properties determine p uniquely.

Theorem 1.5. i is the only probability measure on P for which the statements of Theorems 1.3
and 1.4 hold true simultancously.

Now we are ready to introduce our second model that will be studied in Section 5.

Model II: Critical Branching Wiener Process

This model is featured as follows:

12



(i) a particle starts from the position 0 € IR? and executes a Wiener process W (t) € IR,
(ii) arriving at time ¢ = 1 to the new location W (1), it dies,

(iii) at death it is replaced by Z offspring where
P{Z:O}:P{Zzz}:%,

(iv) each offspring, starting from where its ancestor dies, executes a Wiener process (from its
starting point) and repeats the above given steps, and so on. All Wiener processes and
offspring—numbers are assumed to be independent of one—another.

Let

(a) B(t) be the number of particles living at time ¢, the particles born at time ¢ to be counted as
alive at time ¢ but not at time ¢ + 1, i.e., B(0) =1, P{B(1) =0} = P{B(1) =2} = 1/2,

(b) X1, Xs2,..., X¢ B) be the locations of the particles at time ¢,
(c) MA ) =H#{i: 1 <i< B(t), Xu € A},

where A is a Borel set in IR and t =0,1,2,...,
(d) G(x,t) := A(Rg, 1),
(e) G(x,t) = t7'G(xt"/?,0),
(f) e be a probability measure on P defined by

wui(A) = P{G(x,1) € A|B(t) > 0},
where A C P is a Borel set.

The sequence {B(t), t =0,1,2,...} is called a (critical) branching process. The sequence A\(A, 1)
of random measures is called a (critical) branching Wiener process.
Now we are ready to formulate our main result on this model. It will be proved in Section 5.

Theorem 5.1. There exists a probability measure p on P such that for any € > 0 we have
. S
tliglo P{P(/«Lta :U’) = 5} 0,
and [ satisfies the statements of Theorems 1.3, 1.4 and 1.5.

Next follows the description of our third model that will be detailed and studied in Section 6.
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Model III: Pre-super Brownian motion

(i) N (N = 1,2,...) particles start from the position 0 € IR? and execute N independent
Brownian motions (Wiener processes) Wi(t), Wa(t),..., Wn(t) (W;(t) € IR¢, 0 < t < oo,
i=1,2,...,N),

(i) arriving at time ¢t = 1 to the new locations Wi (), Wa(v)), ..., Wx (1)), they die,

(i) at death they are replaced by Z1, Zs, ..., Zn offspring (respectively), where 71, Zs,..., Zn
are i.i.d.r.v.’s (also independent from W;(¢) (i =1,2,...,N)) with

P{Z; =0} =P{Z, =2} =

9

| —

(iv) each offspring, starting from where its ancestor dies, executes a Brownian motion (Wiener
process) (from its starting point, between ¢ = 1 and ¢ = 2¢) and repeats the above given
steps. Wiener processes and offspring-numbers are assumed to be independent of one another.

Let

(a) B(t,x,N) (t = 0,9,21,...) be the number of particles living at time ¢ = 41, the particles
born at time ) to be counted as being alive at time #), but not at time (¢ + 1), i.e., to
begin with, for ¢ = 0, 1, respectively, we have

B(0,%,N)= N,

N

P{B(),, N) = 2k} = <k>2—N (k=0,1,2,...,N),

(b) B*(t,w,N) (t = 0,1,21,...) be the number of those particles (among the N ancestors)
which have at least one living offspring at time ¢, i.e.,

B*(0,4,N) = N,

P{B*(¢),9,N) = k} = ( év )2—N (k=0,1,2,...,N).

Clearly, for any t > 1, we have

0< B(t,d],N) <N, B(t,d],N) > ZB*(t,i/J,N),
{B(t,d),N) - O} - {B*(t,iﬂ,N) - 0}7

(¢) Xu,Xio,..., Xept,e,N) be the locations of the particles at time ¢ in R,
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(d) MA, 6,9, N):=4{i:1<i< B(t,¥,N), Xy € A},
(e) Alx):={yeR:y<a}, v R,

(f) Az, t, 9, N) = A(A(z). t, 9. N),

(g) F(x,t,, N) = NI\(xt'/2, 1,4, N).

On letting now 1 = N1, we are ready to formulate our main results on pre-super Brownian
motion, which we will prove in Section 6.

Theorem 6.1. For any t > 0 fized, we have
F(,t, NN S FO (N 5 )
on the set {B*(t, N~1, N) > 0}.
Theorem 6.2. Let {tn, N =1,2,...} be a sequence of positive numbers for which, as N — oo,
tv — 0, tnN — oo.

Then we have
F(n. N"LN)— @) as N — .

2  On the family tree {Y,;}

At first we recall
Lemma 2.1. (Lemma 2.11 of [5]) For any 0 < s <1 and ¢ =1,2,... we have
P{L(s) =} = (1 - s)s"",
where L(s) is the cardinality of the set A(s).
The next lemma is a trivial consequence of Lemma 2.1.
Lemma 2.2. We have

EL(s) = (1—s)7",
VarL(s) = s(1—s)7%

BE)ILW) = D) T,
Var(E(lE() — D)

where 0 <u < v < 1.
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Let

M(s)=(1—s)L(s), (0<s<1).

Then Lemmas 2.1 and 2.2 easily imply the following conclusions.

Lemma 2.3. {M(s), 0 < s < 1} is a martingale, i.e.,

E(M(v)|M(u)) =M(u) 0<u<wv<1).

Furthermore, we have

EM(u) = 1,
VarM(u) = wu,
E(M(u)M(u)M(u)) = (M(u))?,
EMu)M() = E(M(u))? = VarM(u) +2 =1+ u,
E(M(v) — M(u))? v — u,

— e

E((M(v) — M(u))*| M (u

Var(M (v)|M(u)) = (v —uw)M(u).

Lemma 2.3 and well-known martingale theorems imply

Lemma 2.4. The random variable

exists almost surely, and

E sup (M(v) ~ M(u))*|M(u))

u<v<]l

P{ sup |M(1) — M(v)| > 2X(1 —

P {uilzl;gl |M(v) — M(u)| > 2A(1 —

IA A

IA

IA

IA

41 — uw)M(u),



Lemma 2.1 and simple calculations imply
Lemma 2.5. We have

P{M(1) <z} = liﬁlP{M(u) <z}=1—e7% z>0.
Lemma 2.6. (6], Lemma 2.10) For anyn=1,2,... and 0 < o < 1/8 we have

P > (1 )b < (8a).
{1;,%&2)51‘/’“—(1 a)}_(Sa)

Let

n(u) = minsn: max Vi <1l—u
1<k<2n1

= l4+max{n:3 k> (nk)eAluw)}, 0<u<l.

Lemma 2.7. Let C' > 8. Then we have

1 C 1
> < _ -
P{n(u)_CloglquZ}_exp( (logS)Cloglu)
for any u € (0,1).

Proof. Let

— U

N{Clog ! +2}1>Clog ! ,
1 1—u

and apply Lemma 2.6 with
a=1-(1-wN <1 (1 u)TmoaT :1fe—1/03%.

Then we obtain

p Vap=1-up = P Ve > (1)
it 1) = P g Wz 0"}

8\ C 1
— < — —
(C) exp( (10’?;8)01%;11;)7

IA

which, in turn, implies Lemma, 2.7.
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3 Proofs of Theorems 1.1 and 1.2
We first note that

F(RY) = L),
Ft(le) - M(t)7

EF(R) — &(t,R) :— (2rt)4/? /R

exp(;—j)d:ﬂ, 0<t<l,

where R is a Borel set of IR%.
Introduce the following notations:

(i) let M(u,v,R) (0 <u <v <1, RC IR?) be the number of those H,;(v)’s whose ancestors (i.e.,
mothers, or grandmothers, or...) at time u are located in R,

(ii) let A(u,v, R1, R2) be the number of those H,i(u)’s which are located in Ry but who have at
least one offspring located in s at time v,

(iii) Cla,r)={y:ye R, |z —y| <r},
(v) RHe) - U Clae),

z€R
(v) R (e)= |J A{=}

{z:C(z,e)CR}
The next lemma is a simple conseqence of Lemmas 2.2 and 2.4.

Lemma 3.1. We have

B (w0, R)|F(R) = 1+ Fu(R),
E( sup (N (u,v, R)(1 —v) — F(R))*|Fu(R)) < 4(1 —u)F,(R).

ulv<1
Applying Lemma 2.2 and some elementary properties of a Wiener process, we obtain

Lemma 3.2. Let (n,k) € A(v), 0<u<v <1, 2>0. Then

P{ sup [ Ho(t) — Hoa(w)] = (0 uW} <o (- 3)

u<t<v
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and

n,k)EA(v) uli<v

P {( sup sup |Hnx(t) — Hup(w)| > z(v — u)l/Q}

< EP {( sup  sup | Hyp(t) — Hp(u)| = Z(UU)”QIL(?))}

n,k)EA(v) ult<v
2

exp (S )BLw) = (1 v) exp ( - %2)

IA

Lemma 3.3. Let x > 1. Then, for any 0 < u < 1, we have

P { sup sup |an(7}) o an(u)| > (1 o u)l/Qx}

usv<l (n,k)eA(v)

= < w e (gl 2082

Proof. Let
v = 1-1(1—u)df, (£=0,1,2,..., 0<a<1),
a = 2_1/2,
A= 244
Observe that
ZZE(WH - W)l/Q = (1 )1/2 1/2220//2 1/2 1/2 Zgaz/Q
£=0

_ 12(1*04)1/2 12(1*04)1/2041/2
= (1—u)/717a1/2 z+(1—u)/—(1ial/2)2

< (1 w)?(z 4 225,

a1 (£41) Zz?
(1—u) Z a” exp 5

=0 =0
2\ ©0
< (1—u)"lexp ( - %) Ezooz (D) exp(—z)



and

sup sup | Hui(v) u)| < Z sup sup | Huk(v) — Hpp(ve)].
u<v<l (n,k)EA(v) =0 Ve<v<vepy (nk)€A(vey1)

Hence, by Lemma 3.2, we conclude

P { sup sup | Hur(v) — Han(u)| > (1 —u)Y3(z + 223/4)}
usv<l (n,k)eA(v)

OO 0
< P sup sup  [Hng(v) — Hup(ve)| = > ze(veyr —ve) 2}
{EZO UZ§U<2)[+1 (n,k)GA(vg+1) " n EZ::O
o0
S ZP { sup sup | Honge(v) — Hyg(ve)| > ze(vey1 — Uz)l/Q}
— ve<v<wveyr (n,k)EA(veq1)

0 2 2
< EZ::O(l — 1) Fexp (%) <2221 —u)texp (%) ,

which, in turn, yields also Lemma 3.3.
Let

Then, by Lemma 3.3, we conclude

Lemma 3.4.

p { sup m(v) > w} < exp (%(az - 2553/4)2)

0<v<1

ifx > 1.
Lemma 3.5. The limit

exists almost surely, and

P {|m(U) —m| > (1 - u)1/2g;} <(1- u)_l exp (%(aj _ 2$3/4)2) :

and

P{m >z} <exp (%(az —~ 2553/4)2)

ifx>1 and uw > 1/2.
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Now, we are to investigate the distance between the random distributions F,(R) and F,(R)
(0 <u<wv <1, RCIRY. The first step is immediate.

Lemma 3.6. For anye >0 and 0 <u < v <1, we have
N(u,v, R () — A(u,v, R™(£), R) < Fo(R) < N(u,v, R (¢)) + A(u, v, R*(e), R),
where R is the complement of R in IR%, i.e., R = le\R.
The next lemma is an immediate consequence of Lemma 3.1.
Lemma 3.7. We have

E sup ((1 —0)N(u,v, R7(€)) — Fu(R™())? < 4(1 — u)®(u, R~ (¢)),

and
E sup (1 —v)N(u,v, R"(g)) — Fu(R"(£))* < 4(1 — u)®(u, R (g)).

u<ov<1

Via Lemma 3.3 in turn, we conclude

Lemma 3.8. We have

P{ sup A(u,v, R (¢),R) > O}

ulv<1

1 1 € 2e3/4 ?
< (1 —u)lexp (5 <(1 EYZINT u)3/8> )

P{ sup A(u,v, R=(¢), R) > O}

u<ov<1
1 £ 92e3/4 1\ ?
-1
< (1 —u)""exp (§ <(1 )2 - (1 u)3/8> ) ;

(1 —u) %> 1.

and

provided that

Let

B\ u,v,6, R) = {F,(R™(g)) — 2A(1 —u)"/? < F,(R) < F(R*(e)) + 2A(1 — u)"/?}.
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Lemma 3.9. Assume that
(1 —u) %> 1.

Then we have

P{B(\,u,v,e,R), Vv:u<wv <1}
1 £ 2e3/4 1\’
-2 -1 1 B
> 1-A"—(1—w) exp(2<(1u)1/2 (1u)3/8>)'

Proof. By Lemma 3.7 we have

P { sup |(1 —v)N(u,v, R™(g)) — F,(R™(g))] > 2A(1 — u)l/Q}
u<ov<1
< A720(u, R (e)) < A2

By Lemmas 3.6 and 3.8

p {(1 o U)N(%U?R_(g)) 7£ Fv(R)}

» 1 e 2¢3/1 1\’
< (1—u)lexp (5 <(1 EYZINT u)3/8> )

which, in turn, implies Lemma 3.9.
Let

A= (1-w)™, (O<a<l/2),
e = (1-u)? (0<B<1/2),

and, as before,

Via Lemma 3.9 we arrive at

Lemma 3.10. For any x € IR we have
P{B(\ u,v,e, R;) Yv:u<v <1}
> 1 (1w (1w e (50w 21—
> 1201 —u)*,

provided u > 1/2.
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Note that (cf. definition right above Lemma 3.9)

(
( u7U7€7Rz)
{Fuw —2) =201 —w)/>™* < Fu(2) < Fua +2) +2(1 —w)'/27 ).

We now wish to show that Lemma 3.10 holds true uniformly in z. In order to do so, introduce
the following notations:

. 1 . . 2 1 .
x(Ji) —logliqujle, (]lf0,1,2,...,[€log17u}, i=1,2,...,d),
1) = 2 daseeesda) = @00, 2()s - w(ja)) € R,
B

J

{B()\,u,v,e,Rz(j)), Yo:u<v< 1} .
Then, by Lemma 3.10, we have

Lemma 3.11. Let 2o > Bd and w > 1/2. Then

{m[)’ }>12 ) (glogliu)d:1—2d+1(]ogﬁ)d(l—u)2a_5d.

Let

and

Observe that

{Fu(@(j) —2) =20 = w)/*™* < Fy(a(7)) < Fula () +2) + 201 — )7 V5 }

C {Fu(a: *26) *2(1 fu)l/Q—a < Fv(a:) < Fu($+2€) +2(1 7u)1/2—a}.

Hence, by Lemma 3.11, we have

23



Lemma 3.12. Let 2a > Bd and w > 1/2. Then

P{Fu(w —2e) —2(1 —w)*™ < Fy(x) < Fu(a+2e) +2(1 —u)'/?7,

1 d
> 124+ (log - u) (1 — )29,

1 1
Va::—log1 §a:§log1 ,Vv:u§v<1}

Since, by Lemma 3.2, we have

1 1 1 2
P su sup |Hne(t)] > lo <(1-uw)lexp|—— (lo ) ,
{(n,k)el?\(u) 0§t£u| (0 & 1-— U} ( ) P ( 2u & 1—u )

we conclude also the following statements.

Lemma 3.13. Let u > 1/2 and 2a > Bd. Then

P{Fu(l' *25) 72(1 iu)l/Q—a < Fv(l') < Fu($+2€) +2(1 7u)1/2—a7
Vz € IRY, Yo :u<wv<l1}

> 124! (log ! )d (1—u)?=P (1 —u)texp L (log ! )2
- 1—u 2u 1—u
d+2 1 I 2a—pd
> 1 — y)2e—pd
> 1-2 (lOglu) (1—u)
Hence
P{ Pz —2(1 —u)/) —2(1 — )/ < P ()
< Fu(x+2(1 — )Y@ 1201 =)V v e R, Yo iu <o < 1}
d
> 1 o 2d+2 (lOgL) (1 o U)l/(d+3).
- 1—u
Consequently

P{p(F,(), Fy()) = 4(1 — )@ vy 1y < v < 1}

d
< 2d+2 (log - i u) (1 - U)l/(d+3)-

Lemma 3.13 clearly implies Theorems 1.1 and 1.2.
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Lemma 3.14. Let .
Fulz) = #{(n, k) : (n, k) € Au), Hor(Yar) < x},

(1/2 <u <1, z € RY), and put }
Fu(z) = (1 —uw)Fulx).

Then 1
P{p(Fua -/'f‘u) > (1 - U)l/QZ} < (1 — u)_l exp (5(2 _ 223/4)2) :
provided that z > 1.

Proof. By Lemma 3.3 we arrive at

P{F (e~ (1 -u)"?) <

() < Fy(z+ (1 —u)22) Yo tu<wv <1}
98/ )7

l\.’)l>—\e

> 11—~ exp(

which implies Lemma 3.14.

4 The properties of the limit measure

Proof of Theorem 1.3. It is an immediate consequence of Lemma, 3.5.

Proof of Theorem 1.4. Clearly, there are two particles located at H11(Y11) at time Y71, Consider

the offspring of the first one at time u > Y17. Let .7:131)(:1:) (x € IR?) be the distribution of these
particles, i.e.,

FW(x) = #{(n,k) € Au) : Hup(u) < z and Hyp(u) is an
offspring of the first particle located at Hy1(Y11)
at time Y11}.

Similarly,

FP = y{(n,k) € Aw) : Hup(u) <  and Hpp(u) is an
offspring of the second particle located at Hq1(Y11)
at time Y11}.

Note that (given Y71 and Hi1(Y11))

(1) d-u

— (1)
D) = 75-F0)
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and

1—u
F&) () = mﬂ”(w)

are P—valued 1.i.d. random measures. Then

A= 5 (10 () + 7 ()

Let F) resp. F® be the limits of Fq(Ll) resp. Fq(f) asu T1, e,
lim p(FM, Dy = lim p(F FY =0 as.
The existence of these limits follows from Theorem 1.1. Hence for any Borel set A C P we have

w(A) = P{Fc A} =EP{F c A|Y11, H1(Y11)}
= {3 [ (P (G am) 7 () ) vt e )

which, in turn, implies Theorem 1.4,

Proof of Theorem 1.5. Let

(i) v be an arbitrary probability measure on P which satisfies the properties given by Theorems

1.3 and 1.4,
(i) Yy < Y{ < - be the ordered sample of the array {Yo1, Yor, k= 1,2,...,2"7 1, n=1,2,...},
ie.,
YO* - Ybl — 07
Yl* — Y117
YQ* = min(Ygl,Ygg),
(iii) {Go,Ggf), k =1,2,..., £ = 1,2} be an array of P—valued i.i.d. random measures with

distribution v.

Define a P-valued stochastic process {I', = I'y(z), 0 <u < 1, x € IR?} as follows. Let

Tw=Gy if 0<u<Yy,

o) = (o (ge) o (= 7?)
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if Y* <wu <Yy, Then, for any Borel set A C P, we have
I/{F € A} = EI/{F € A|Y11, HH(YH)}

N { /de/< ( )1/2)+G(2)<ﬁ))¢a( )dadyeA}
—

i.e., the distribution of Ty, (Y7* <wu < Y5) is v. Let Y5 < u < Y3 and, for the sake of simplicity,

assume that Y5 = Yo1, say. Let
— Ho1(Ya1) @) (7 — Ho1(Ya1)
b = ) (S0 | g (1))
g 2 (1~ Yop)1/2 + (1 — Va1 )2

e—Hy1(Yi1)  Hz1(Yo1)—H11(Y11)
W ( (-vi)!/? (1-v11)1/2 )
2

(1 — Y21)1/2(1 — Yll)_l/Q

z—H11(3I1/12) . H21(Y21)—H11/12(Y11)
+G(22) ( (1_Y11) (1—Y11) )

(1 — Y21)1/2(1 — Yll)_l/Q
Observe that the distribution of
(1—Yo)(1 — Y1) ! = Vo V7! = Uy

is uniform—(0,1), and the distraibution of

Hoy (Ya1) — Hi1(Y11)
(1 —Yqp)1/2

(given Usy) is
¥ (0.0%).
Hence the distribution of ~, is equal to that of
1y (& — Hi1(Y11)
GV ( ) .

(1—Yy)l/2
Let . (Vi)
1 @ (x— Hu(Yn * o .
L 2<VU+G1 ((1Y11)1/2 ))7 (I <u <),

Then the distribution of I'y, is v.

Continuing this procedure, we get the process I', (0 < u < 1), and the distribution of T, is v
forany 0 <wu < 1.

Now we compare I, and F,,. By Theorem 1.3 we have that

11%111 p(Ty, F,) =0  a.s.,

which implies that ¢t = v. Hence we have Theorem 1.5.
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5 Critical Branching Wiener Process: Proof of Theorem 5.1

This section is devoted to the proof of Theorem 5.1. Towards this end, at first we recall a few
definitions and lemmas of [5] and [6].

For any 0 < s < t, let Q(s,t) be the number of those particles which are living at time s and
which have at least one offspring living at time ¢. Clearly

B(s) > Q(s, 1), B(t) > Q(s,1),

{Q(s,1) =0} ={B() =0}, (0<s<1),

and Q(s,1) is a nondecreasing function of s, (0 < s <), and Q(0,¢) = 1, provided that B(t) > 1.
Hence on the set {B(t) > 0} we can define a r.v. v =11 = v11(t) as follows:

v=inf{s:0<s <t Qs t)=2}.

At time v we have two particles which have at least one offspring living at time ¢. The time
v will be called the first branching time of the process. The two particles born at time v can be
considered as the roots of two independent brnahcing processes living at least till time ¢ (starting
from v). Let va1 = v21(t), resp. voa = vaa(t), be the first branching tiems of the branching processes
starting from v. Clearly v < vo; <'t, (i = 1,2). In case v = t, define vo; = t. Note that in case
v=1—1 we have also v9; = {.

We can say again that at times vo; (resp. 1ae) we have two (resp. two) particles, and they
can be considered as the roots of four independent branching processes living at least till time
t. Let vs1 = vs1(t) (resp. vsza = wv3a(t)) be the first branching times of the branching processes
starting from vo1. Similarly let vas = v33(t) (resp. vsq = vayq(t)) be the first branching times of the
branching processes starting from vo2. Note that in case vo1 > ¢ — 1 we have v31 = 32 = ¢ and in
case Vog >t — 1 we have vas — v3y — t.

In general, at time v, (k= 1,2,...,2"71), we have two particles and they can be considered as
the roots of two independent branching processes living at least till time ¢ (starting from v,). Let
Unt1,2k—1 = Vnt1,26—1(t), T€SD. Vny12k = Unt1.2k(t), be the first branching times of the branching
processes starting at v,,. Note that v, 1 95-1 = Uny1oe = L1 pp 20— 1.

Now, we recall a few lemmas which describe the behaviour of the r.v.’s v,.

Lemma 5.1. ([5], Lemma 7) For any k=1,2,...,t — 1, we have

Pk P—k  2logt+1
< Plon() > k| B(H) >0} < 4 Ogt+.

Lemma 5.1 tells us that the r.v. t71(v — 1) is “essentially” uniformly distributed in (0,1). The
next lemma, claims that t~1(v — t) can be approximated by a uniform—(0, 1) r.v. if the underlying
probability space is rich enough. From now on we assume, without loss of generality, that this
space is rich enough.
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1,2,...}

Lemma 5.2. (5], Lemma 9) There exists a sequence of uniform—(0,1) r.v.’s {U(t), t
on the set {B(t) > 0} such that

tU(t) — 1 <wi(t) <tU(t) +2logt + 3.
Similar results can be obtained for any vg(t). In fact we have
Lemma 5.3. (5], Lemma 10) For any t = 1,2,... there exists an array
{Un(), kE=1,2,...,277 , n=1,2,...}
of independent uniform—(0,1) r.v.’s such that
(Vg1 — Yor) —n(2logt +3) — 1 < vng1e — Vnk
< t(Yny1e — Yor) +(2logt + 3)n,

and

where {Ynr} is defined by {Uni} as in the Introduction, and ¢ is 2k — 1 or 2k.
Forany t =1,2,..., let

WD —War() k=1,2,...,2""% n

1,2,...}

be an array of independent IR4valued Wiener processes which is independent from both of the
arrays

(), E=1,2,...,277 n=1,2,...}
and
{Un(t), k=1,2,...,2" 1 n=1,2,...}.

Introduce the following notations:

J11(8) WH(S) if 0 < s <tV,
J (8) o Jll(s) if 0 S S S tYH,
21 N J11 (Y1) + Wai(s — tY1) if tY11 < s < Yoy,
J (8) o Jll(s) if 0 S S S tYH,
2 B Ji (Y1) + Waa(s —tYa1)  if t¥n <s <tYo,
Jn_lj[(k+1)/2](8) if0<s < tYn_L[(kJrl)/Q],
Jnr(s) = In—1,[(k+1)/2)(5)

+ Wai(s = Yo 1 krnys2) Y0 1 er1)/2) £ 8 < Yok,
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Kii(s) = Wil(s) if 0 <s <w,

K (8) - K 8) if 0<s <,
21 N K11(Yi1) + Wai(s —vi1) if vi1 <5 <o,
s) if 0 <s <wi,

Kao(s) = { K11(Y11) + Was(s — v11) if 11 <5 < oo,
and so on.

Lemma 5.4. Let

Zinke = Wk (WUnk — Vn—1,[(k+1)72]) — Wak(t Yok — Y1 [k 1)/2)))-

Then, for any x > 1, we have

2
Consequently, for any C > 0, we have

2
P{ max max | Zni| > 01/2(logt)2} < ( (log ) ) .

n<Clogt 1<k<2n—1 3
Now we wish to compare the processes .JJ and K.
Let
k(1) =k, k(2) =[(k+1)/2],..., k(i +1) = [(k(i) + 1)/2],
Yi = t(Vnojik(r1) — Yamje1,k(+2))s
and
Vj = Vn—jk(j+1) — Vn—j—1,k(j+2)"
Then we have

Jnk(tY k) = S:: Wi ki1 (y5) + Wi(tyn),
and 1_2
Kok(vnr) = Z(:) Wa—jkGi+n(vs) + Wi (vin).
Hence .
| St (Y rks) — Koage (Vi)
n—2
< Z(:) Wik (@5) + Was sk (i)l + (Wi (tYn) — Wi ()],
-

and by Lemma 5.4 we obtain
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Lemma 5.5. We have

log t)?
_ S (13/2 3| o (
P {ngé’a]%(gt | max | Jnk(tYnk) — Knk(Vnk)| = C7/(logt) } < exp ( 3 ) .

Let A(u,t) (0 <u < t) be the set of those (n, k) pairs of integers for which
Yo 1k yg Sy Ynp >
Similarly, let M(u,t) (0 < u < t) be the set of those (n, k) pairs of integers for which

Un—1[(k+1)/2] S U Vpk > U.

Let

n(u,t) = 14+max{n:3k > (n,k) € Alu,t)},
m(u,t) = 1+max{n:3k > (n,k) e M(u,t)}.

Then, by Lemma 2.7, we conclude

Lemma 5.6. Let C' > 8. Then we have

P {n(u,t) > Clogl—iit—l + 2} < exp ( (]og%) C'log #) .

Let
Fulz,t) = #{(n,k): (n,k) € Au,t), Jop(tYnr) < a:tl/Q},
Fulz,t) = #{(nk): (n,k) € Au,t), Ju(u) < a:tl/Q},
Fulat) — (1 - %) Fulz ),
Fu(a,l) — (1 ~ ) A

Then, by Theorem 1.1 and Lemma 3.14, we arrive at

Lemma 5.7. For anyt > 0 and u € (1/2,1) there exist a P-valued random measure F(-,t) such
that

1/(d+3)
P {Elv € u,t] such that p(F,(-,t), F(-,t)) >4 (1 — %) }

1 d " 1/(d+3)
< d+2 I
~ 2 <10g 1 ut_l) (1 t) s



and

~ U 1/(d+3)
P {Elv € |u,t] such that p(F,(-,t), F'(-,t)) >4 (1 — —) }

1 d w\ 1/(@+3)
< od+2 _ u .
=7 (1°g1ut—1) (1 t)

Let A C P be a Borel set and define the measures

UU(Aﬂt) - P{Fu(~,t) € A},
(A t) = P{F(,t) € A},
(A D) — P{R(-1) € A).

Then Lemma 5.7 easily implies

Lemma 5.8. For anyt >0 and u > 1/2, we have

1 d w\ 1/(d+3)
) ) < 9d+3 _z
P(Mu( 7t)7/~L( 7t)) <2 (10g1ut_1) (1 t) ,
and ) s,
1 U
7. . < d+3 s o .
Pl (1), 1l 1)) <2 (loglut_l) (1 t)

It is also easy to see that the measure i satisfies the statements of Theorems 1.3-1.5.
Let

g~u(a:,t) =#{(n, k) : (n,k) € Au,t), Kni(vni) < a:tl/Q},
and

Crulm,t) — (1 - %) Gul1).
Lemma 5.9. For any € > 0 we have

Proof. By Lemmas 5.3 and 5.6 we have

P {W Yl < (Clogm 4 2) (2logt+3)V: (n k) € A(u,t)}

> 1—exp ( (log%) Cloglii_lu) .

Note also that
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(i) {Ynr —u, (n,k) € A(u,t)} are independent uniform—(0, tu) r.v.’s,

(i1) if Buk > 0 ((n,k) € A(u,t)) is the number of offspring (at time t) of the particle located at
Kok (vnk) at time vpg, then Byi’s are independent r.v.’s with

EBnk: ~ t 721/”]?7

11) the probability that the distance between an oflspring ol the particle located at K,i(Vnk),
iii) th babili h he di b {Tspri { th icle 1 d K
((n, k) € A(u,t)), and its parent is more than z(t —u)"/2, is less than texp(—z2/2).

The above statements clearly imply Lemma 5.9.

Lemma 5.10. With any € > 0, we have
lim P {p(Culcst), Pl 1) 2 2} = 0.

Proof. It is an immediate consequence of Lemmas 5.5 and 5.6.

Proof of Theorem 5.1. It follows from Lemmas 5.5, 5.6, 5.8 and 5.9 combined.

6 Pre—super Brownian motion: Proofs of Theorems 6.1 and 6.2

Inspired by [3] and [4], our model of pre-super Brownian motion was introduced in [2|, where we
studied a time sequence of exact distribution functions for the most-right vertex of the quadrant in
IR? that is determined by the surviving particles, as well as an asymptotic form of these distributions
when 1 = N~1, and N — oo. There, in addition, we also established a strong theorem when 9 = 1
and N — oo,

For the sake of proving Theorems 6.1 and 6.2, we recall three lemmas.

Lemma 6.1. ([1]) For anyt=0,1,2,..., we have
EB(t) = 1,

E(B(t))? = t+1,
lim B(t) = 0 a.s.

t—o0
Lemma 6.2. ([6]) For anyt=0,1,2,..., we have

2
t+2+2log(t + 1)

2
<p:=P{B >0} <——.
< {B > }_t+2
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Lemma 6.3. ([2])
N

P{B*(t,), N) = k} = ( f )Pf/w(l —poy)”
(k=0,1,2,...,N, t =1, 2,...), where p(-) is defined in Lemma, 6.2.

In the case ¥ = N~1, Lemma 6.3 implies

Lemma 6.4. For anyt fited and k =0,1,2,..., as n — 0o, we have

e n - (1)) 0 &)

5 (3) e ()
HA\t) TP\

Let 1 be the probability measure defined in Section 1, and let Fi, Fs, ... be a sequence of P-
valued i.i.d. random measures with distribution p. Further let w be a Poisson r.v. independent of
{F;} with parameter 2(¢t/N)~1. Consider the random measure

- ht kRt 4By
71'

7

on the set {m > 0}.
Now Theorems 6.1 and 6.2 follow by applying Theorem 5.1 and Lemma 6.4.
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