
Random E�ects Cox Models: A Poisson

Modelling Approach

Renjun Ma0;1, Daniel Krewski1;2 and Richard T. Burnett1;3

1Faculty of Medicine, University of Ottawa, Ottawa, Canada, K1H 8M5

2 School of Mathematics and Statistics, Carleton University, Ottawa, Canada, K1S 5B6

3 Environmental Health Directorate, Health Canada, Ottawa, Canada, K1A 0L2

February 1, 2000

Abstract

We propose a Poisson modelling approach to random e�ects Cox

proportional hazards models. Speci�cally we describe methods of sta-

tistical inference for a class of random e�ects Cox models which ac-

commodate a wide range of nested random e�ects distributions. The

orthodox BLUP approach to random e�ects Poisson modeling tech-

niques enables us to study this new class of models as a single class,

rather than as a collection of unrelated models. The explicit expres-

sions for the random e�ects given by our approach facilitate incor-

poration of relatively large number of random e�ects. An important

feature of this approach is that the principal results depend only on

the �rst and second moments of the unobserved random e�ects. The

application of proposed methods is illustrated through the re-analysis

of data on the time to failure (tumour onset) in an animal carcinogen-

esis experiment previously reported by Mantel and Ciminera (1979).
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1 Introduction

Although the incorporation of random e�ects into Cox models has gained

increasing attention in analyses of event history data, these models pose

considerable theoretical diÆculties in the development of estimation and in-

ference procedures (Clayton 1991). Until recently, previous research in this

area has focussed mainly on survival models with one level of random e�ects

(Sastry 1997; Sargent 1998). The frequentist approaches to nested frailty

survival models have usually been restricted to piecewise constant baseline

hazard functions and speci�c random e�ects distributions (Sastry 1997). On

the other hand, Bayesian approaches to nested random e�ects Cox models

are computationally intensive, and the assessment of convergence of com-

putational techniques such as the Gibbs sampler remains an area of debate

(Gli�ord 1993; Smith and Roberts 1993; Sargent 1998). Flexible frailty mod-

els that can be �t with reasonable computational e�ort are therefore needed.

Considerable progress has been made in recent years in the area of random

e�ects generalized linear models (Breslow and Clayton 1993; Lee and Nelder

1996; Ma 1999). The connection between the Cox and Poisson regression

models has long been recongnized (Whitehead 1980). In this paper, we show

that random e�ects methods developed for use with generalized linear models

can be applied by characterizing the random e�ects Cox model as a random

e�ects Poisson regression model. Our approach deals with an unspeci�ed

baseline hazard function and a wide range of random e�ects distributions.

Our approach can also handle ties and strati�cation in the same way as in

the standard Cox model. Further, our explicit expressions for the random

e�ects facilitate incorporation of relatively large numbers of random e�ects.

The organization of the paper is as follows. We introduce the random

e�ects Cox model and its auxiliary random e�ects Poisson models in Sections

2 and 3, respectively. In Section 4, we discuss the estimation of the nested

random e�ects Cox models based on the orthodox BLUP approach to the

auxiliary random e�ects Poisson models. An illustrative example involving

animal carcinogensis data is presented in Section 5, and potential extensions

of the models are discussed in Section 6.

2 Random E�ects Cox Model

In this section, we consider a Cox model with two levels of random e�ects.

Suppose that the cohort of interest is strati�ed on the basis of one or more rel-

evant covariates. Let the hazard function for individual (i; j; k) from stratum

s = 1; 2; : : : ; a at time t be denoted by h
(s)
ijk
(t). Given the random e�ects, we

assume that the individual hazard functions are conditionally independent
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with

h
(s)
ijk
(t) = h

(s)
0 (t)uij exp(�

>
x
(s)
ijk
): (1)

Here, uij > 0 are random e�ects, or frailties, shared by all individuals within

the same group, and h
(s)
0 (t) is the baseline hazard function for stratum s.

Clearly the survival times (either failed or censored) within the same group

are correlated. The random e�ects are traditionally assumed not to depend

on the regression parameter �. Without loss of generality, we assume that

the design matrix is of full rank.

Here, we will focus on three-level hierarchical Cox models with the fol-

lowing nested random e�ects structure. Suppose the cohort is composed of

m independent clusters indexed by i. Within each cluster i, there are Ji cor-

related sub-clusters indexed by (i; j). Further, within each sub-cluster (i; j)

there are nij individuals whose survival times are given by (1). One such

hierarchy example was presented by Sastry (1997) where the children were

clustered at both community and family levels.

We introduce a class of models with nested random e�ects based on

the class of Tweedie exponential dispersion model distributions denoted by

Twr(�; �
2), where Twr(�; �

2) includes the normal (r = 0), Poisson (r = 1),

gamma (r = 2), compound Poisson (1 < r < 2) and inverse Gaussian (r = 3)

distributions as special cases (J�rgensen, 1997). More speci�cally, we assume

that the cluster level random e�ects u1; : : : ; um are independently identically

distributed random e�ects following the Tweedie distribution, with

U1; : : : ; Um � Twr(1; �
2): (2)

We further assume that, given the cluster level random e�ects U� = u� =

(u1; : : : ; um), the sub-cluster level random e�ects U11; :::; UmJm
are condition-

ally independent, and that the conditional distribution of Uij, givenU� = u�,

depends on ui only, and is given by

UijjUi = ui � Twq(ui; !
2); (3)

Assumptions (1)-(3) together provide a full speci�cation of a nested ran-

dom e�ects Cox model. To avoid non-positive random e�ects, we require

r � 2 and q � 2. Here, the multiplicative sub-cluster random e�ect uij
represents the e�ect of the (i; j)th sub-cluster on the individual relative risk

due to the �xed e�ect �. Under these assumptions, the hazard function in

(1) can be rewritten as

h
(s)
ijk
(t) = h

(s)
0 (t)uivij exp(�

>
x
(s)
ijk
); (4)

where Vij = Uij=Ui. It can be easily veri�ed that E(Vij) = 1 and Cov[Ui; Vij] =

0. In the literature, Vij and Ui are usually assumed to be independent, with

Vij referred to as sub-cluster random e�ect instead of uij.
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A Cox model with one level of random e�ects is obtained as a special case

of the Cox model with two levels of random e�ects by setting !2 = 0 and

Ji = 1 for all i.

3 Auxiliary Random E�ects Poisson Models

Let �s1; : : : ; �sqs denote the distinct failure times in the sth stratum, with

msh indicating the multiplicity of failures occurring at time �sh (s = 1; : : : ; a).

The risk set at time �sh is a subset of stratum s,R(�sh) = f(i; j; k) : tijk � �shg,

where tijk is the observed survival time for individual (i; j; k) from the sth

stratum. In addition, let Y
(s)
ijk;h

be 1 if a failure occurs for individual (i; j; k)

from the sth stratum at time �sh and 0 otherwise. Let Y and U denote the

vectors of Y
(s)
ijk;h

and the random e�ects Uij, respectively. Given the random

e�ects U = u, Peto's version of the conditional partial likelihood (cf. Cox

and Oakes 1984 p.103) is

p`(�;Yju) =
aY

s=1

qsY
h=1

Q
(i;j;k)2R(�sh)

u
Y

(s)
ijk;h

ij

n
exp(x>

ijk
�)
o
Y

(s)
ijk;h

(msh!)nP
(i;j;k)2R(�sh)

uij exp(x
>
ijk
�)
o
msh

: (5)

We now de�ne an auxiliary random e�ects Poisson regression model. As-

sume that the components ofY are conditionally independent, given random

e�ects U = u, with

Y
(s)
ijk;h

� Poisson
�
uij exp(�sh + x

>

ijk
�)
�

= Poisson
�
�
(s)
ijk;h

�
(i; j; k) 2 R(�sh); (6)

where �
(s)
ijk;h

= uij exp(�sh+x
>
ijk
�). Given the random e�ects, the conditional

likelihood for the random e�ects Poisson model is

`(�;�;Yju) =
aY

s=1

qY
h=1

Y
(i;j;k)2R(�sh)

n
uij exp(�sh + x

>
ijk
�)
o
Y

(s)
ijk;h

exp
n
uij exp(�sh + x

>
ijk
�)
o

=
aY

s=1

qY
h=1

Q
(i;j;k)2R(�sh)

u
Y

(s)
ijk;h

ij

n
exp(�sh + x

>
ijk
�)
o
Y

(s)
ijk;h

exp
nP

(i;j;k)2R(�sh)
uij exp(�sh + x

>
ijk
�)
o : (7)

We will show that the maximum conditional Poisson likelihood estimates for

the regression parameter vector � from (7) are the maximum conditional

partial likelihood estimates for the regression parameter vector � from (5).

Consider the maximum likelihood estimates for �
(s)
ijk;h

, denoted by �̂
(s)
ijk;h

,

based on the conditional Poisson likelihood. Since Y
(s)
ijk;h

(i; j; k) 2 R(�sh) are
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independent for (i; j; k) 2 R(�sh) given the random e�ects, it follows from

the relation X
(i;j;k)2R(�sh)

Y
(s)
ijk;h

= msh (8)

that X
(i;j;k)2R(�sh)

�̂
(s)
ijk;h

= msh: (9)

We therefore have X
(i;j;k)2R(�sh)

uij exp(�̂sh + x
>

ijk
�̂) = msh: (10)

or

exp(�̂sh) =
mshP

(i;j;k)2R(�sh)
uij exp(x

>
ijk
�̂)

: (11)

At its maximum (�̂; �̂), the conditional Poisson likelihood for (�;�) is

`(�̂; �̂;Yju) =
aY

s=1

qY
h=1

Y
(i;j;k)2R(�sh)

exp(�msh)u
Y

(s)
ijk;h

ij

n
exp(�̂sh + x

>

ijk
�̂)
o
Y

(s)
ijk;h

=
aY

s=1

qY
h=1

Y
(i;j;k)2R(�sh)

"
exp(�msh)u

Y
(s)
ijk;h

ij

n
exp(x>

ijk
�̂)
o
Y

(s)
ijk;h

#

�

�
fexp(�̂sh)g

P
(i;j;k)2R(�

sh
)
Y

(s)
ijk;h

�

=
aY

s=1

qY
h=1

Q
(i;j;k)2R(�sh)

u
Y

(s)
ijk;h

ij

n
exp(x>

ijk
�̂)
o
Y

(s)
ijk;h

exp(�msh)nP
(i;j;k)2R(�sh)

uij exp(x
>
ijk
�̂)
o
msh

=
aY

s=1

(
qY

h=1

m
msh

sh
exp(�msh)

msh!

)
p`(�̂;Yju);

where the �rst and third equalities are obtained using (10) and (8), and

(11), respectively. Clearly the conditional partial likelihood and conditional

Poisson likelihood share the same kernel at the maximum conditional Poisson

likelihood estimates for the regression parameter vector �.

Let f(U; �) be the density function ofU with parameter �. The joint par-

tial likelihood of the regression parameter � given the data and the random

e�ects is

p`(�;Y;U) = p`(�;YjU)f(U; �):

The joint likelihood of the regression parameter � given the data and the

random e�ects for the auxiliary random e�ects Poisson regression model is

`(�;�;Y;U) = `(�;�;YjU)f(U; �):
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To obtain the regression parameter estimates, given the data and the ran-

dom e�ects, maximizing the joint (partial) likelihood is equivalent to maxi-

mizing the conditional (partial) likelihood since the random e�ects vector U

does not depend on the regression parameter vector. Therefore we have

`(�̂; �̂;Y;U) = constant � p`(�̂;Y;U):

This demonstrates that the maximum joint Poisson likelihood estimates for

the regression parameter vector � from (7) are the maximum joint partial

likelihood estimates for the regression parameter vector � from (5). We

may therefore make inferences on the random e�ects Cox models by �tting

random e�ects Poisson models.

The random e�ects are unobserved, and thus have to be predicted. Al-

gorithms for �tting random e�ects models usually iterate between updat-

ing random e�ects and updating parameter estimates until convergence is

achieved. Given the predicted random e�ects, the estimates of the regres-

sion parameter � for the auxiliary models are also the regression parameter

estimates for the corresponding random e�ects Cox models. We therefore ap-

proximate the random e�ects using the consistent random e�ects predictors

for the auxiliary models.

In the reminder of this paper, we will focus on the nested random e�ects

Cox models speci�ed by (1), (2) and (3) via �tting the auxiliary nested

random e�ects Poisson models speci�ed by (6), (2) and (3).

4 Orthodox BLUP Approach to Auxiliary Mod-

els

In this section, we discuss estimation of the auxiliary nested random e�ects

Poisson models based on the orthodox BLUP approach to nested random

e�ects Poisson models (Ma 1999).

4.1 Prediction of Random E�ects

We will predict the random e�ects by the best linear unbiased predictor of

U given Y in the literal sense (cf. Brockwell and Davis 1991 p.64). More

speci�cally, letting U and Y be random vectors with �nite second moments,

the best linear unbiased predictor of U given Y is given by

c
U = E(U) + Cov(U;Y)Var�1(Y) (Y � E(Y)) :

We call cU the orthodox BLUP of the random e�ects since the mode of the

conditional density of the random e�ects given the data is also referred to
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as BLUP in the literature (McGilchrist 1993), although this modal predictor

is neither linear nor unbiased in general. The orthodox BLUP of the ran-

dom e�ects is the linear unbiased predictor of U given Y which minimizes

the mean square distance between the random e�ects U and their predictor

within the class of linear functions of Y.

Explicit expressions for the mean square distances between the compo-

nents of the random e�ects U and their predictors are as follows:

ci = E( bUi � Ui)
2

=
�2

1 + �2
P

a

s=1

Pqs

h=1

P
(i;j;k)2R(�sh)

wij�
(s)
ijk;h

; (12)

where (i; j; k) runs over the risk set R(�sh) for �xed i. Here,

�
(s)
ijk;h

= exp
�
�sh + �

>
x
(s)
ijk
)
�

= exp
�
(�>;�>)x

(s)
ijk;h

�
= exp

�
>x

(s)
ijk;h

�
;

and, for �xed (i; j),

wij =

0@1 + !2
aX

s=1

qsX
h=1

X
(i;j;k)2R(�sh)

�
(s)
ijk;h

1A�1 ;
where (i; j; k) runs over the risk set R(�sh). Similarly, we have

cij = E( bUij � Uij)
2

= wij

n
!2 + ciwij

o
: (13)

The cluster random e�ects predictor can be expressed as

bUi =
1 + �2Pa

s=1

Pqs

h=1

P
(i;j;k)2R(�sh)

wijY
(s)
ijk;h

1 + �2
P

a

s=1

Pqs

h=1

P
(i;j;k)2R(�sh)

wij�
(s)
ijk;h

= ci

0@ 1

�2
+

aX
s=1

qsX
h=1

X
(i;j;k)2R(�sh)

wijY
(s)
ijk;h

1A ;

where (i; j; k) runs over the risk set R(�sh) for any given i. The sub-cluster

random e�ects predictors are

bUij = wijÛi + !2wij

aX
s=1

qsX
h=1

X
(i;j;k)2R(�sh)

Y
(s)
ijk;h

;
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where (i; j; k) runs over the risk set R(�sh) for any given (i; j).

Using Chebyshev's inequality, it follows from (12) and (13) that we have

the following consistency results in terms of convergence in probability (Ma

1999):

(i) Ûi�!Ui as �
2
! 0;

(ii) Ûij�!Uij as !
2 + �2

! 0.

(iii) Ûij�!Uij as minjksh(�
(s)
ijk;h

)!1.

Results (i)-(iii) are usually referred to as `small dispersion asymptotics'. Let

nij be the number of the induced observations y
(s)
ijk;h

contained in sub-cluster

(i; j). We also have the following large sample asymptotics if minjk(�ijk) �

clog(minj(nij))=minj(nij) for a positive constant c. That is, the only restric-

tion is that �ijk should not tend to zero too quickly.

(iv) Ûi�!Ui as Ji !1 and Ûij

P
�! Uij as minj(nij)!1.

The magnitude of the nij depends not only on the number of individuals in

sub-cluster (i; j), but also on the number of the failures in each individual's

stratum. In other words, the greater the number of subjects, especially those

with complete survival histories, the better we are able to predict the random

e�ects.

4.2 Estimation of Regression Parameters

Consider �rst estimation of the regression parameters in the case of known

dispersion parameters. Estimation of the unknown dispersion parameters

will be discussed in next section.

Di�erentiating the joint likelihood of the auxiliary model for the data

and random e�ects yields the joint score function. Replacing the random

e�ects with their predictors, we have an unbiased estimating function for the

regression parameters  = (�>;�>)>:

 () =
aX

s=1

qsX
h=1

X
(i;j;k)2R(�sh)

x
(s)
ijk;h

(Y
(s)
ijk;h

�
bUij�

(s)
ijk;h

):

The solutions of  () = 0 provide estimates of the regression parameters.

The Newton scoring algorithm introduced by J�rgensen et al. (1995) can be

used to solve this estimating equation.

The Newton scoring algorithm is de�ned as the Newton algorithm applied

to the equation  () = 0, but with the derivative of  () replaced by its

expectation. This expectation, denoted by S(), is called the sensitivity

matrix:

S() =
mX
i=1

cieie
>

i
+

mX
i=1

JiX
j=1

!2wijfijf
>

ij
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�

aX
s=1

qsX
h=1

X
(i;j;k)2R(�sh)

�
(s)
ijk;h

x
(s)
ijk;h

(x
(s)
ijk;h

)>; (14)

where

ei =

0@ aX
s=1

qsX
h=1

X
(i;j;k)2R(�sh)

wij�
(s)
ijk;h

x
(s)
ijk;h

1A ; (15)

and

fij =

0@ aX
s=1

qsX
h=1

X
(i;j;k)2R(�sh)

�
(s)
ijk;h

x
(s)
ijk;h

1A : (16)

Here, the index (i; j; k) runs over the risk set R(�sh) for �xed i in (15) and

for �xed (i; j) in (16), respectively, and (i; j; k) runs freely over the risk set

R(�sh) in the last term of (14). The resulting algorithm gives the following

updated value for :

� =  � S
�1() ():

The sensitivity matrix multiplied by �1 has been shown to be the Godambe

information matrix for the nested random e�ects Poisson model (Ma 1999).

That is, the sensitivity matrix plays a role in the Newton scoring algorithm

similar to that of the Fisher information matrix in the Fisher scoring algo-

rithm.

Under mild regularity conditions, the solutions of  () = 0, denoted

by ̂, have been shown to be consistent as m ! 1 with the asymptotic

covariance given by �S�1(). The estimating function  () has also been

shown to be optimal in the sense that it attains the minimum asymptotic

covariance for the estimator ̂ among a certain class of linear functions of Y

(Ma 1999). When there are no random e�ects, the sensitivity matrix becomes

the negative Fisher information matrix derived from the partial likelihood

for the standard Cox model. Expression (14) shows that the asymptotic

variance for regression parameter estimates based on the standard Cox model

is smaller than that based on the random e�ects Cox model if the regression

parameter estimates are identical for both models.

An analogue of Wald's test is available for testing the hypothesis H0 :

�(1) = 0, where �(1) is a sub-vector of �. The test statistic is:

W = b�>(1) nJ11(b)o�1 b�(1);

where J11(b) is the block of the asymptotic covariance matrix of b corre-

sponding to �(1). Asymptotically, this statistic follows a �2(k)-distribution,

where k is the size of the sub-vector b�(1).
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4.3 Estimation of Dispersion Parameters

We now discuss the situation in which the dispersion parameters are un-

known. In analogy with generalized linear models, we adopt the following

adjusted Pearson estimator for the dispersion parameter �2:

�̂2 =
1

m

mX
i=1

n
(Ûi � 1)2 + ci

o
:

The �rst term is the Pearson estimator, with the second term being a bias

correction term. The corresponding adjusted Pearson estimator for !2 is:

!̂2 =
1

m

mX
i=1

1

Ji

JiX
j=1

n
( bUij �

bUi)
2 + cij + ci � 2ciwij

o
:

Again, the �rst term is the Pearson estimator, whereas the remaining terms

are bias correction terms. These dispersion parameter estimates can also be

shown to be consistent as m!1 (Ma 1999). Unlike most other approaches

in the literature, our asymptotic variance of the regression parameter estima-

tor is not a�ected by the variability in the dispersion parameter estimators.

In fact, this orthodox BLUP approach depends on the random e�ects

only via the �rst and second moments of the sub-cluster random e�ects. It

has been shown to be robust, to a certain extent, against mispeci�cation

of the random e�ects distributions (Ma 1999), and thus covers non-Tweedie

random e�ects such as log-normal random e�ects.

4.4 Computational Procedures

Initial values for the regression parameters are taken as the regression pa-

rameter estimates obtained from standard Poisson regression techniques as-

suming independent responses. Initial random e�ects predictions Ûi and Ûij

are given by the average of the responses within cluster i divided by the aver-

age of all responses and the average of the responses within sub-cluster (i; j)

divided by the average of all responses, respectively. The initial dispersion

parameter estimates are calculated from the adjusted Pearson estimators,

omitting the bias-correction terms.

The algorithm then iterates between updating the regression parameter

estimates via the Newton scoring algorithm, updating random e�ect predic-

tors via the orthodox BLUP, and updating dispersion parameter estimates

via the adjusted Pearson estimators.

5 An Illustrative Example

We illustrate the application of our approach to the random e�ects Cox

model using data from an animal carcinogenesis experiment originally re-
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ported by Mantel and Ciminera (1979). This experiment involved 50 sets

of three female weanling rats selected from within the same litter, with one

animal assigned to a treatment group exposed to a putative carcinogen, and

the remaining two serving as litter-matched controls. The time to tumour

occurrence or censoring was recorded to the nearest week for each of the

150 animals employed in this study. This experiment thus involved a single

binary covariate with values of 0 and 1 indicating assignment to the control

or treated group, respectively.

Because of the possibility of intra-litter correlation (Gart et al. 1986),

we included a random e�ect for each litter. The corresponding Cox regres-

sion model assumes that, given the random e�ects, the hazard functions

for individuals are conditionally independent, with the hazard function for

individual j from litter i given by

hij(t) = h0(t)ui exp(xij�);

where xij is the indicator variable, reecting exposure to the test agent.

The litter random e�ect ui are assumed to follow independent and identical

Tweedie distributions with unity mean and dispersion parameter �2 described

in (2).

Parameter estimates for both the standard and random e�ects Cox models

are shown in Table 1 where the Peto-Breslow approximation (Cox and Oakes

1984) for tied failure times was used in both analyses. The estimates of the

regression parameter � associated with the treatment e�ect are comparable

under both models, as are the standard errors of these estimates. Based on

the ratio of these estimates to their respective standard errors, the treatment

e�ect is signi�cant under both models.

Table 1: Parameter estimates for the animal carcinogenesis data.
Parameter Estimates

Cox Model �̂ � SE �2

Standard 0:898� 0:317 -

Random e�ects 0:902� 0:312 0:293

Scatter plot of the litter random e�ects is shown in Figures 1. These 50

litters were labelled as 1; 3; : : : ; 99 by Mantel and Ciminera (1979) and are

re-numbered as 1; 2; : : : ; 50 here for convenience. Litters 3, 21, 22, 25 and 37

demonstrated the lowest litter-speci�c relative risks, whereas litter 13 had

the highest (Figure 1). Figure 2 shows that the litter random e�ects match

the number of tumour occurrences in the corresponding litter; the higher

the litter-speci�c relative risk, the higher the litter tumour occurrence. The

one exception is litter 13, which had a higher litter-speci�c relative risk than
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litter 32, although litter 32 was the only litter with tumours occurring in all

three littermates. Examination of the data revealed that all three rats in

litter 13 had exceptionally low tumour onset times (Figure 3).

Figure 1, 2 and 3 are approximately here.

6 Discussion

In this paper, we have introduced a Poisson modelling approach to random

e�ects Cox models. We have speci�cally focussed on Cox models with two

levels of nested random e�ects. We may consider models with more than

two levels of random e�ects. For such models, our method remains valid

with (i; j; k) replaced by higher dimensional indices. The proposed Poisson

modelling approach can also be extended to random e�ects Cox models with

time dependent covariates in the following way. Suppose that all covariates

assume constant values between two distinct failure times, as reected by the

corresponding step functions for the cumulative failure times. The incorpo-

ration of such time dependent covariates can be simply achieved by replacing

x
(s)
ijk

by x
(s)
ijk
(t) = xijk(�sh) for Y

(s)
ijk;h

in the model.

For the Cox model with one level of random e�ects (Ji = 1, !2 = 0,

with uij = ui), the random e�ects have been previously characterized by

gamma (Clayton 1991), positive stable (Hougaard 1986a, 1986b) and log-

normal (McGilchrist 1993) distributions. Our framework e�ectively covers

the gamma, log-normal and inverse Gaussian distributed random e�ects.

Our Poisson approach is not limited to Cox models with the nested ran-

dom e�ects structures. Taking uij = vivj for balanced designs will lead to

crossed random e�ects. For Cox models with only time dependent subject

frailties ui(t) for each subject i, we can employ the techniques developed

for Poisson models with an AR(p) structure on the latent variable ui(t).

Since the distinct failure times are not equally spaced, a speci�c time series

structure for time dependent frailties may not be appropriate. In the Cox

model speci�ed by (1)-(3), taking the second level random e�ects uit = ui(t)

as conditional on the subject random e�ect ui, where t represents the dis-

tinct failure times in the stratum of the ith subject, we have correlated time

dependent frailties for each subject.
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