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Abstract

We introduce adapted sets and optional sets and we study a type of
strong Markov property for set-indexed processes, that can be associated
with the sharp Markov property defined by Tvanoff and Merzbach (2000a).
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1 Background and Preliminaries

In the classical theory, the notion of a Markov process is based on the represen-
tation of a process whose behaviour satisfies the hypothesis of “independence of
the future from the past”, or equivalently, “the absence of the after-effect” at
any fixed moment of time; the process is said to be strong Markov if the prop-
erty of the absence of the after-effect remains valid at any random moment of
time. Markov processes indexed by discrete subsets of the real line (i.e. discrete
totally ordered sets) always possess this property (Gihman and Skorohod, 1974,
p. 86-88), while in the continuous case, one can give a criterion for the process
to be strong Markov, and prove that in many important cases there exists a
version of the process satisfying this criterion (Gihman and Skorohod, 1975, p.
60-62).

The literature is rather scarce when it comes to the strong Markov property
for processes indexed by partially ordered sets, the main difficulties being: 1.
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to decide which is the right Markov property to work with; and 2. to find the
appropriate analogue for the notion of stopping time, for the stopped o-field,
for the ‘future events’ o-field and for the ‘present’ o-field.

In what follows we will give a brief review of the subject in the literature,
trying to use, as much as possible, a unified notation for various papers, which
will be consistent with the notation that we subsequently use in this paper.

We will use the notation F L H | G, if the o-fields F and H are conditionally
independent given G.

First we mention in passing that Wong and Zakai (1985) introduced briefly
the notion of strong Markov property for path-parametrized processes; however,
these are not examples of processes indexed by partially ordered sets.

In the case when the index set is a countable partially ordered set T, various
authors seem to agree that the best way to define a Markov chain X :=
(Xy)ier is to say that for any t € T, A1(¢) L Aa(t) | o(Xy), where A;(t) =
o({Xp;t <t}) and As(t) := o({Xy;t" > t}). Cairoli and Dalang (1996) use
the assumption that the underlying probabilistic model is a Markov chain to
solve an optimal control problem; as our framework is different, we will not
discuss this case here. On the other hand, Greenwood and Evstigneev (1990)
introduced the notion of splitting element to denote a random element 7 in
T which has the property that for any ¢t € T we can write {T =t} = F1 N F}
with F; € A;(t);i = 1,2; to any splitting element 7, they associated the o-fields

A(r) =c({FNn{r=th5 Fe A4@{),teT});, i=1,2

The fact that is relevant for our discussion here is that any Markov chain
X is strong Markov, in the sense that for any splitting element 7, A;(7) L
Ax(r) | o({r, X, D).

The case of a very general uncountable partially ordered set does not seem
to be discussed anywhere in the literature. Instead, three important particular
situations are considered. These are in fact three increasing levels of generality;
the present paper will address the most general of them.

The first level deals with the case when the index set is the Euclidean space
R%r (or, more generally Ri) and therefore it inherits the extra structure intro-
duced by the total ordering of the coordinate axes. The sharp Markov prop-
erty (with respect to a set D C R%) of a two-parameter process X := (XZ)zeRi
has been in the literature for a long time (first time introduced by Lévy, 1948)
and it requires that Fp L Fpe | Fap, where Fy = o({X,; 2z € A}) for any
A C RA. Merzbach and Nualart (1990) defined a stopping line as a random
decreasing line L for which {z < L} € F, == Fjo ) Vz € R?, where a ‘decreas-
ing line’ { is in fact the boundary of a lower set D(l) C R%r; the stopped o-field
associated to any stopping line L is

Fpy ={F € FyFN{L <1} € Fpg for any decreasing line [}

32



For each random set «, the same authors defined the o-field
FY =o({Xa1a(2), 1a(2); 2 € R%})

and they showed that in fact fg(L) = Fp(r)- The important fact proved by
Merzbach and Nualart (1990) is that certain point processes, which are sharp
Markov with respect to the sets D(l), have the property that for any stopping
line L7 fD(L) 1 fg(L)C | fi(

The second level of generality deals with the case of processes indexed by
a collection of closed subsets of a d-dimensional Euclidean space. When this
collection contains all closed subsets of the space, Evstigneev (1977) intro-
duced a type of Markov property for general ‘random fields’ i.e., for filtra-
tions (F4)a (which can arise in particular from a process X := (X4)a, if we
set Fp := o({X4;A C B, A closed})). More precisely, a random field (F4)4
(or, in particular a process X) is called locally Markov, if for any disjoint
closed sets A and B, F4 L Fp | Fsa, or equivalently if for any closed set A,
Fa L Fae | Foa. A closed-valued random set « is called a Markov random
set if {a C A} € F4 for any closed set A; to any Markov random set & one can
associate the o-fields A, = NesoAS, and B, = Nesol55, where

AL, =c({FN{a. D A} F € Fa, A closed}) V o(a)

B, =oc({FN{(0a). 2 A}; F € Fa, A closed}) V o(a)

The main result of Evstigneev (1977) is that any locally Markov random field
(or process) has the property that for any compact-valued Markov set a, for
any closed set A and for any F' € F4, we have P[F|A,] = P[F|B,] a.s. on the
set {w;alw)n A = 0}.

The third level of generality deals with the case of processes indexed by a
collection A of compact subsets of a Hausdorff topological space T, collection
which does not contain disjoint (non-empty) sets, is a semilattice (i.e. closed
under arbitrary intersections), and separable from above, in a sense which will
be specified below. The general theory of these processes was initiated and
developed by Ivanoff and Merzbach in the late 80’s and it produced impressive
results in the martingale case (e.g. Tvanoff and Merzbach, 2000b). In the present
paper we will consider a type of strong Markov property for these set-indexed
processes, which can be associated to the ‘sharp Markov property’, one of the
various types of Markov properties that have been introduced in this framework
(e.g. Balan and Ivanoff, to appear; Tvanoff and Merzbach, 2000a).

The separability from above property of the indexing collection A allows
us to approximate from above a set A € A as

A= ﬂngn(A); gn+1(A) - gn(A)vA - gn(A)O vn

where the approximation set g,(A) can be written as a finite union of sets that
lie in a finite sub-semilattice A,, of A; moreover, A, C A, 1 Vn and g, preserves
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arbitrary intersections and finite unions i.e. g,(Naeada) = Nacagn(As), VA,
€ A and Uj_ A = U AL = Ui gn(Ai) = UJL gn(A)), YA, A} € A; note
that this implies that the function g, is monotone i.e. A, A" € 4, A C A =
gn(A) C gn(A"). By convention, g, (0) = 0.

There are many examples of classes of sets which have these properties, from
which one can recognize easily the case of processes indexed by the lower sets
of the d-dimensional space R% (A is a ‘lower set’ if z € A implies [0, z] C A),
and in particular the case of processes indexed by the ‘rectangles’ [0, 2], z € Rf,lr
(or equivalently, the case of multi-parameter processes).

In this framework .A(u) denotes the class of all finite unions of sets in .A,
C is the semi-algebra of all sets of the form C' = A\B, A € A, B € A(u), and
C(u) is the algebra of all finite unions of sets in C. Note that the function g,
can be extended to A(u) by setting ¢,,(B) := Uaca acpgn(A), B € A(u); the
extension preserves finite unions and finite intersections and is monotone.

All the processes X := (X4)aca are assumed to have a unique additive
extension to A(u),C and C(u) i.e., whenever the set B € A(u) can be written
as B = U?:lAi == U;nzlA; with Al, .. .,An,All, .. .,Am S A

ZXAi - Z Xa; na, oot (1" X404, =
i=1

1< <in<n
m
Xar — X oar 4o (1) X /a.s.
A Al NA Aln...NA 3
’ 5 NAL In..nAL
Jj=1 1<f1<ja<m

whenever the set C € C can be written as C = A\B = A'\B’ with A, A’ €
A, B, B € A(u)
Xa—Xanp = Xar — Xynp as,;

and the additive extension to C(u) is defined in the obvious manner.

A process X := (X 4)ac.4 is said to be monotone outer-continuous if for any
decreasing sequence (A, ), € A, X 4, = lim,, X4 . Note that by additivity, X
is monotone outer-continuous as well for a decreasing sequence (B, ), C A(u),
provided that N, B, € A(u).

An increasing collection (F4)sec of o-fields is called a filtration; an .A-
indexed filtration (F4).4c4 can be extended to a filtration indexed by A(u) by
defining 75 = V cs acpFa, B € A(u). A filtration (Fg)pea(w) is called
monotone outer-continuous if for any decreasing sequence (B, ), C A(u) with
Np By, € A(u), we have Fr g = N, Fg, .

A process X := (X 4)aena is adapted with respect to a filtration (F4)aca
if X4 is Fa-measurable YA € A (by additivity this implies that Xpg is Fpg-
measurable VB € A(u)). The minimal filtration with respect to which a process
X is adapted is given by Fg = oc({Xa; A € A, A C B}), B € A(u).

According to Tvanoff and Merzbach (2000a), a process X = (X4)aca is
called sharp Markov if Fg L Fge | Fop, where Fop := c({Xa;4€ A AC
B,AZ B%}), Fpe :=c({Xa;A€ A AL B}).
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The notion of stopping set was introduced by Ivanoff and Merzbach (1995)
to denote an A(u)-valued random set £ which can be written as the finite union
of some A-valued random sets and has the property that {£ D A} € F4,¥vA € A
and {£ =0} € Fy.

Unfortunately, the approximation g,(£) of a stopping set & may not be a
stopping set, and this is the point where Tvanoff and Merzbach (2000a) were
forced to introduce the additional assumptions of the monotone outer-continuity
of the process and of the filtration. These assumptions are satisfied by point
processes but they are not satisfied by many other important classes of processes,
like the Brownian motion, for instance.

In the present paper we will be able to get around this difficulty by replacing
the stopping sets with random sets called ‘adapted sets’, respectively ‘optional
sets’, which are defined using the set-inclusion in the natural direction, not in
the reverse direction as with the stopping sets. Using optional sets, we will
obtain the same results as Ivanoff and Merzbach (2000a), which will be applied
this time to a much broader class of processes. The importance of this work is
that it indicates that the natural generalization of a Markov time is an optional
set, and not a stopping set.

2 The Strong Markov Property

In this section we will introduce the adapted sets and the optional sets and we
will study a type of strong (sharp) Markov property that can be associated to
these objects.

We will assume that the approximating functions g, have the following def-
inition:

g’ﬂ(B) = r-WDE.AH(U,);BQDODv VB € A(u)

This is the case of many examples of indexing collections, including the lower
layers of Ri and the rectangles [0, z], z € Rﬂlr.

(From the separability from above of the indexing collection A we have

VD, B € A(u),D C B = 3n such that g, (D) C B° (1)

Let (FB)Bca() be the extension to A(u) of a set-indexed filtration and
(Fp)Be A(w) 1ts minimal outer-continuous filtration, defined by F7, := N,Fy (py,
D € A(u). Then

Fb = Npeaqw),pcpeFp, D€ Au) (2)

The following assumption gives the approximation from below for a set in

A(u).

Assumption 2.1 For any B € A(u) there exists a monotone increasing se-

quence (dp(B))n>1 C A(u) such that B® = U,d,(B),d,(B) C d,;1(B)° Vn.
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Consequently,
¥D,B € A(u),D C B® = 3n such that D C d,,(B)° (3)

A random set a is a function with values in A(u), defined on a measurable

space (£2,F).

Definition 2.2 A random set a is called an adapted set of the filtration
(FB)Beaw) if {& € B} € Fp for every B € A(u); it is called an optional
set of the filtration (FB)pea(w) if {a C B’} € Fg for every B € A(u).

To any adapted set @ we can associate the o-field:

T @ (FeF Fn{a CBYeFp VBe Au)}

To any optional set o we can associate the o-field:
Fr P e F  Fn{a C B} € Fp VB € Alu)}
The following facts are completely analogous to the classical case.

Lemma 2.3 (a) If a = B € A(u), then a is an adapted set and F, =
Fp,Fh=F%.

b) A random set is an optional set of the filtration (Fg)pec.a(w) if and only if it
€A(u)
is an adapted set of the filtration (F§)peaw)- In particular, any adapted
set is an optional set.

(¢) Ifa is an optional set, then F), = {F € F : FN{a C B} € F; VB € A(u)}.
In particular, if a 1s an adapted set then F, C F].

(d) If @ is an optional set and (3 is an adapted set such that o C (3°, then
FL C Fs.

Proof: (a) Clear.

(b) If « is an optional set of the filtration (Fg)pca(), then {a C B} =
Mp>mia C g.(B)°} € Fom)¥m > 1 and hence {a C B} € Ny Fy gy = Fp.
Conversely, if a is an adapted set of the filtration (F})pe a(u), then {a € B} =
Upi{a Cd,(B)} € Fg, because {a Cd,(B)} € fcrln(B) C Fg.

(c) Same type as argument as (b).

(d) For each F € F we have FN{8C B} =(Fn{a CB°})N{BC B} €
Fp VB € A(u)ie. FeFz O

Comment 2.4 If o is a discrete random set i.e., it takes on only countably

many configurations, then a is an adapted set if and only if {a = B} € Fp VB €
A(u). In this case F, = {F € F: FN{a = B} € Fg VB € A(u)}.
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Proposition 2.5 If a is an optional set then g, (@) is a (discrete) adapted set
and F], = ﬂnfgn(a)-

Proof: We claim that the following relation holds:

{gml@)=By={aCB\ |J {aCD} ¥BeAl) @

DeA,,(u),DCB

where C denotes the strict inclusion.

(Suppose that g,(a) = B. Clearly a C g,(a)® = BY. If there were some
D € A,(u),D C B such that a C D° then by the definition of g, we would
have g,(a) C D, which is impossible. Conversely, suppose that a C BY and
a € D° VD € A(u),D C B. Since a C B, there exists an n such that
gn(a) C B. Since g,(a) € A(u) and a C g,(a)?, we cannot have g,(a) C B;
hence g,(a) = B.)

(From (4) it follows that {g,(a) = B} € Fg VB € A(u) i.e., gn(a) is an
adapted set.

Let us prove now that F, = M,F, (). Since a C gn(a)’, we have F], C
Fon(a)- Conversely, let F' € NyFy (o). For each B € A(u) FNn{a C B} =
Nnsm(F N {gn(a) C gn(B)}) € Fy,.(g)¥m > 1; hence FN{a C B} € N Fy, ()
=FLie FeF, O

The following result is completely analogous to processes indexed by R .

Proposition 2.6 If X := (X4)aca is a monotone outer-continuous process,
which is adapted with respect to the filtration (Fp)pc a(w), then

(a) X, is F,-measurable for any discrete adapted set a; and
(b) X, is F.-measurable for any optional set .

Proof: (a) For any arbitrary a € R, {X, < a}N{a = B} = {Xp <
a}yN{a= B} € Fp,VB € A(u) ie, {X, <a} € F,.

(b) By the monotone outer-continuity of the process, X, = lim,, X gn(a) and
{Xa < a} = Un>m Me>N {Xgn(oz) < a} S fgm(a),Vm > 1. Hence {Xa < a} S

ﬂmfgm(a) =F.. 0

For the rest of the section we will assume that X := (X4)4ca is a fixed
set-indexed process and (F4)4c 4 is its minimal filtration. We will denote with
B(R) the class of all Borel subsets of R.

The following o-fields have been introduced by Tvanoff and Merzbach (2000a)
for any random set a:

def

FX = o({Xaljacay, I{acay; A € A})

def
Foo = o({Xal{aca,aga0y [{aca,agacy; A € A})

FE o({Xaljagay L{agay; A € A})
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Lemma 2.7 (Lemma 4.1 of Tvanoff and Merzbach, 2000a) (a) If o = B € A(u)
then fé( = fB,fgfl = faB,fo)fc = Fpe.
(b) For any random set a we have Fz, C FX.

Lemma 2.8 (a) For any discrete adapted set a we have FX = F,.
(b) For any optional set o we have F!, = ﬂnfﬁ(a),fﬁ+l(a) - fﬁ(a) n.
(c) For any optional set a we have F-x C Fr.

Proof: (a) To prove that {A C a} € F,, note that {A C a} N{a = B} is 0 if
A ¢Z B and it is exactly {o = B} otherwise; in either case this intersection lies
in Fg. Similarly {X4 € T} N{A C a} € F, for every I" € B(R). Conversely,
let F € F,. Using Lemma 4.6 of Tvanoff and Merzbach (2000a), F N {a =
B} € FBlia=By = f§|{o¢:B} C FX since {a = B} € FX, C FX. Finally
F = Ugerange(a)(F N {a = B}) € FX.

(b) Using (a), fﬁ(a) = Fyo (o) and hence FJ =N Fy (o) = ﬂn]:;i(a).

(c) For each A € A we have I{qcqy = limy [iacy, (o)) and Xaljacay =
limy, Xaljacg, (o)} Since Ijacy, (o)} and Xaljacy, (o)} are fﬁ(a)—measurable
and the o-fields (fﬁ(a))n are decreasing, it follows that the limits Iy 4c,y and
Xaliscay are measurable with respect to the intersection ﬂnj:;i(a) =JF7. 0

Ideally, we would like to say that a sharp Markov process X := (X4)ac4 is
strong Markov if for any optional set a, we have

Fa LFoe | Fau (5)

which would imply that FX L FX. | F%,, using Lemma 2.8, (c). However,
we would rather not introduce a new terminology, since we could not find an
example of a process satisfying this property.

In what follows we will see how close we can get of the desired conditional
independence (5) for an arbitrary sharp Markov process. The following o-field
has been introduced by Ivanoff and Merzbach (2000a) for any random set a:

def

Fisonton) i 0({Xa1{aCg,(0),4700) 1{ACq, (0),47a0); A € A})

Lemma 2.9 Suppose that g,(A) € A,, YA € A, VYn > 1. Then for every
optional set o, fg;n(a) - f[ii,gn(oz)] - fﬁ(a).
Proof: The first inclusion is valid for any random set a. To prove it, it will be

enough to show that the generators of fg;n(a) are in fﬁ,gn(a)]' Note that the

set {A C gp(a)} N{A Z g,(a)’} can be written as the difference

{ACgn(@}n{AZa"H\ {ACgn(a)’}n{AZa"})

and the first set {A C gn(a)} N{A € o} lies in F, ¢ (ay- As for the second
set {A C gn(a)’}N{A Z a®}, it can be written as

Uk ({95 (4) € gn(a)}n{A Z a”}) = UMk ({gm (4) € gn(@)}0{gm (4) £ a”})
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which belongs to f[a ()] since g, (4) € A. A similar argument shows that
{ X4 €T}N{ACgn(a)}N{AZ gu(a)’} € Fla,gn(a)] for any I' € B(R).

To prove the second inclusion we will assume that « is an optional set and
we will show that the generators of f[a o (a)] are in f ()" Note that {A &

a’t = Mg{gr(A) € a} E FX CFr C fgn(a) by Lemma 2.8. Hence {A €
a’tN{A C gu(a)} € F (a) Finally, a similar argument shows that {X4 €
rn{ag O}H{Aan( )} Efﬁ(a) for any I' € B(R). O

Since the o-fields (F7*

) may not necessarily be monotonically decreas-

. [, gn (a)]/™
ing, we let
X,m X,m
Fiaimeon = V Fingn o and Fo5 = wF0 )
N>n

Note that Fz C fX since {A C a,A Z o’} = N> {A C gr(a), A &

gn ()]

a’} e f[ag ()] and 51m11arly {Xa €T, ACa,AZa"} € f[ag ()] for any
I' € B(R); hence Fz C faa
By Lemma 2.9, for every optional set a
Fagute) € Fiagniar) € Fouta) (6)

Theorem 2.10 If X := (Xa)aca is a sharp Markov process, then for every
optional set a, Fr, L Fx | Fz.

Proof: The argument is similar to the one used in the proof of Theorem 4.19
of Ivanoff and Merzbach (2000a). Let ¥ be a bounded, F:X.-measurable ran-
dom variable. Then Y = lim,, Y;,, where Y,, is a bounded, f;i (a)c—measurable

random variable. Using Theorem 4.7 of Tvanoff and Merzbach (2000a) and (6),

E[Y, |]-"X(a)] = E[Ya|F5, (o) = EValFo o) Since Ff = Ny FX ) and
f =N f[ag (o)) WE get
E[Y|FL] = lim B[Y,|F,) ()] = lim E[Y, Finro o) = EIY 1725]

using a generalized form of the Martingale Convergence Theorem. O

Corollary 2.11 If X := (X4)aca is a sharp Markov process, then for every
optional set a, F L Fa | F .

Comment 2.12 The applicability of the preceding results extends to all sharp
Markov processes, without any requirement for regularity of sample paths or
filtrations. Therefore, this holds for all processes with independent increments,
including the Brownian motion on the lower layers, which is known to be a.s.
unbounded, and therefore a.s. discontinuous.
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