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1 Introduction

For a given topological space F, let B(F) denote the totality of all bounded Borel functions
on I and let C'(F) denote its subset comprising of continuous functions. Let M (F) denote

the space of finite Borel measures on F endowed with the topology of weak convergence.
Write (f, p) for [ fdu. For FF € B(M(E)) let

SF(u) . 1
op(z) i

[F(u+ hée) = F(p)], =€ E, (1.1)

if the limit exists. Let (6°F/du(x)du(y))(1) be defined in the same way with F' replaced
by (0F/éu(y)) on the right hand side. For example, if I, (1) = (f, ™) for f € B(E™)
and p € M(E), then

o (1) = 2 (B} p™ ), € B (1.2)

where ¥;(x) is the operator from B(E™) to B(E™ ') defined by
¢i<$)f<$17”'7$m—1):f<$17"'7$i—17$7$i7"'7$m—1)7 Z; €E7 (13)

where x € F is the ith variable of f on the right hand side.
Now we consider the case where F = IR, the one-dimensional FEuclidean space. Sup-
pose that ¢ € C(IR) is Lipschitz and g € C'(IR) is square-integrable. Let

p(z) = /]Rg(y —2)g(y)dy, z€ R, (14)

and a(z) = c(x)* + p(0) for z € IR. We assume in addition that p is twice continu-
ously differentiable with p’ and p” bounded, which is satisfied if ¢ is integrable and twice
continuously differentiable with ¢’ and ¢” bounded. Then

| L OF(p)
N 2/ d:z:2 du(x M<d$)
/ d2 021 (p)
"3 drﬁdwu( )ou(y)

defines an operator A which acts on a subset of B(M([R)) and generates a diffusion
process with state space M(IR). Suppose that {W(z,t) : = € R,t > 0} is a Brownian
sheet and {B;(t) : t > 0}, i = 1,2,---, is a family of independent standard Brownian
motions which are independent of {W(z,t) : x € IR,t > 0}. By Lemma 3.1, for any
initial conditions x;(0) = z;, the stochastic equations

p(dz)p(dy) (1.5)

da;(t) = c(z:(t)dB;(t) + /]Rg(y —z; ()W (dy,dt), t>0,i=1,2,---. (1.6)



have unique solutions {z;(t) : t > 0} and, for each integer m > 1, {(21(¢), -+, 2., (t)) : t >
0} is an m-dimensional diffusion process which is generated by the differential operator

i P S ) P =
2= ox? 2 Wy 7 Ozi0;

In particular, {z;(t) : t > 0} is a one-dimensional diffusion process with generator G :=
(a(x)/2)A. Because of the exchangebility, a diffusion process generated by G™ can be
regarded as an interacting particle system or a measure-valued process. Heuristically,
a(-) represents the speed of the particles and p(-) describes the interaction between them.
The diffusion process generated by A arises as the high density limit of a sequence of
interacting particle systems described by (1.6); see Wang (1997, 1998) and section 4 of
this paper. For o € B(IR)*, we may also define the operator B by

BP() ~ 5 [ ota) et St (1.8

Let £ = A+ B. A Markov process generated by L is naturally called a superprocess
with dependent spatial motion (SDSM) with parameters (a, p, o), where o represents the
branching density of the process. In the special case where both ¢ and ¢ are constants,

A

the SDSM has been constructed in Wang (1997, 1998) as a diffusion process in M (1),
where IR = [RU{0} is the one-point compactification of IR. It was also assumed in Wang
(1997, 1998) that g is a symmetric function and that the initial state of the SDSM has
compact support in IR. Stochastic partial differential equations and local times associated
with the SDSM were studied in Dawson et al (2000a, b).

The SDSM contains as special cases several models arising in different circumstances
such as the one-dimensional super Brownian motion, the molecular diffusion with tur-
bulent transport and some interacting diffusion systems of McKean-Vlasov type; see e.g.
Chow (1976), Dawson (1994), Dawson and Vaillancourt (1995) and Kotelenez (1992,
1995). It is thus of interest to construct the SDSM under reasonably more general con-
ditions and formulate it as a diffusion processes in M(IR). This is the main purpose of
the present paper. The rest of this paragraph describes the main results of the paper
and gives some unsolved problems in the subject. In section 2, we define some function-
valued dual process and investigate its connection to the solution of martingale problem
of an SDSM. Duality method plays an important role in the investigation. Although the
SDSM could arise as high density limit of a sequence of interacting-branching particle
systems with location-dependent killing density ¢ and binary branching distribution, the
construction of such systems seems rather sophisticated and is thus avoided in this work.
In section 3, we construct the interacting-branching particle system with uniform killing
density and location-dependent branching distribution, which is comparatively easier to
treat. The arguments are similar to those in Wang (1998). The high density limit of the
interacting-branching particle system is considered in section 4, which gives a solution
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of the martingale problem of the SDSM in the special case where ¢ € C(IR)* can be
extended into a continuous function on [R. In section 5, we use the dual process to prove
the uniqueness of the solution and extend the construction of the SDSM to a general
bounded Borel branching density o € B (ZR)Jr In both sections 4 and 5, we first construct
the SDSM as a diffusion process in M ([R) and then use martingale arguments to show
that, if the process is initially supported by IR, it always lives in M (IR), which is a new
result even in the special case considered in Wang (1997, 1998). In section 6, we prove a
rescaled limit theorem of the SDSM, which states that a suitable rescaled SDSM converges
to the usual super Brownian motion if ¢(-) is bounded away from zero. This describes
another situation where the super Brownian motion arises universally; see also Durrett
and Perkins (1998) and Hara and Slade (2000a, b). When ¢(-) = 0, we expect that the
same rescaled limit would lead to a measure-valued diffusion process which is the high
density limit of a sequence of coalescing-branching particle systems, but there is still a
long way to reach a vigorous proof. It suffices to mention that not only the characteriza-
tion of those high density limits but also that of the coalescing-branching particle systems
themselves are still open problems. We refer the reader to Evans and Pitman (1998) and
the references therein for some recent work on related models. In section 7, we consider
an extension of the construction of the SDSM to the case where o is of the form o = 7
with 7 belonging to a large class of Radon measures on IR, in the lines of Dawson and
Fleischmann (1991, 1992). The process is constructed only when ¢(-) is bounded away
from zero and it can be called a superprocess with dependent spatial motion and measure-
valued catalysts (SDSMMC). The transition semigroup of the SDSMMC is constructed
and characterized using a measure-valued dual process. The derivation is based on some
estimates of moments of the dual process. However, the existence of a diffusion realization
of the SDSMMC is left as another open problem in the subject.

Notation: Recall that IR = IR U {0} denotes the one-point compactification of IR. Let
A™ denote the Lebesgue measure on IR™. Let C5(IR™) be the set of n-times continuously
differentiable functions on [R™ which together with their derivatives up to the nth order
can be extended to d continuously. Let CJ(IR™) be the subset of C3(IR™) of functions
that together with their derivatives up to the nth order vanish at 0. Let (P/")i>o de-
note the transition semigroup of the m-dimensional standard Brownian motion and let
(T{™)i>0 denote the transition semigroup generated by the operator G™. We shall omit
the superscripts m and n when they equal one. Let (Tt)tzo and G denote the extensions
of (Ti)i>0 and G to IR with 9 as a trap.

We remark that, if |c(x)] > € > 0 for all z € IR, the semigroup (7;")i>0 has a density
P (x,y) which satisfies

Pz, y) < const - gl (x,y),  t>0,2,y € R™, (1.9)

where ¢*(x,y) denotes the transition density of the m-dimensional standard Brownian
motion; see e.g. Friedman (1964, p.24).



2 Function-valued dual processes

In this section, we define a function-valued dual process and investigate its connection to
the solution of the martingale problem for the SDSM. Suppose that o € B(IR)*. Observe
that, if F,, ;(p) = (f, u™) for f € C5(IR™), then

1 .- " m
Al s () = 9 / m ZCL(:Ei))fii(:Elv o T ) (- dy,)
i1
1 m
+§ / m Z p(r; — ) i, o T )™ (d, - - - d,)
i it
- Fmef(:u)v (21)
and
1 m
BFm:f(/'L) B § Z -1 ¢1‘7f<$17 T ,le_l)/,Lm(d;Bh T dxm—l)
i j=1lizj " B
1 m
= 3 > Faovegr (W), (2.2)
i.j=Li#j

where @;; denotes the operator from B(E™) to B(E™™1) defined by

¢ijf<$17 ) LEm—l) - O-<mm—1)f<x17 oy Tm—1y L1y xm—2)7 (23)

where z,,_1 is in the places of the #th and the jth variables of f on the right hand side.
It follows that

1
LEn (k) = Famp(p) + 5 Z Font,0,5(11)- (2.4)

1,j=1,i#7

Let {M; : t > 0} be a nonnegative integer-valued pure jump Markov process with
transition intensities ¢;; such that ¢;;—1 = i(i —1)/2 and ¢;; = 0 for all other pairs (3, 7).
Let 70 = 0 and 7ag, = o0, and let {7 : 1 < k < My — 1} be the sequence of jump times
of {M; :t>0}. Let {Ix: 1 <k < My— 1} be a sequence of random operators which are
conditionally independent given {M, : t > 0} and satisfy

P{I= @yM(r) =1} = gy 159451, (2.5)

where @, ; is defined by (2.3). Let B denote the topological union of {B(IR™) : m =
1,2, -} endowed with pointwise convergence on each B(IR™). Then

Y, = T DT Ty T DTY, 7o <t <my,0< k< My—1, (26)

Tk —Tk—1



defines a Markov process {Y; : t > 0} taking values from IB. Clearly, {(M,,Y;):t > 0} is
also a Markov process. To simplify the presentation, we shall suppress the dependence of
{Y: :t > 0} on o and let Q7, ; denote the expectation given My = m and Yy = f € C(IR™),
just as we are working with a canonical realization of {(My, Y:) : t > 0}.

Lemma 2.1 For any f € B(IR™) and any integer m > 1,
Qr, {(Yt, eXp{ / M,(M, — l)dsH
IS 2t = ¥ 2.
Proof. For 0 <k <m — 1 set

Ak: - Q {<Y;7 eXp{ / M - 1)d8}1{7k<t<77@+1}:|

Then Ag = (T7*f, ™) < || fI{1, w)™. By (2.6), for 1 <k <m —1, Ay is equal to

m!(m —1)! o N .
2k<m - k) (m k— 1 / dSl/ dsy - / E<Tt Sk Iy T82 ;1 FlT L™ >d5k7
from which we get

m< _1 ¢ k m—k
<
A € gt sy s [ ol 1y s
< 27 m(m — DMl e

Then we have the conclusion. O

Lemma 2.2 Suppose that 0, — ¢ boundedly and pointwise and p, — p in M(IR) as
n — oo. Then, for any f € B(IR™) and any integer m > 1,

Qr, {(Yt, eXp{ /M l)dsH
1im me{ﬁft,un exp{ /M l)dSH. (2.8)

Proof. By the construction (2.6) we have

[ [ [ M, = 1yas)

(T f, um (2.9)
1 1 t—u
+— Z / Q1,007 1 {(Yt_u, pMewY exp {—/ M,(M, — l)dSHdu.
1] 1,i#£7 ! 2Jo



If h € C(IR%), then

Q| Vet exp {5 [ (0, — 1)as}|
= Qfs,n {<Yta sty exp {% /Ot M (M, — l)dSH
= /}R My Yo, y)pn(dz)on (y)dy. (2.10)

If f,g € C(IR)" have bounded supports, then we have f(z)u,(dz) — f(z)u(dz) and
g(y)on(y)dy — g(y)o(y)dy by weak convergence, so that

lim | f(2)g(m)pe(x, y)pa(dz)on(y)dy = /}R , [ (@)g(y)pe(z, y)uldz)o (y)dy.

n—oo RQ

Since {u,} is tight and {o,} is bounded, one can easily see that {p;(x, ¥)pn(dx)o,.(y)dy}
is a tight sequence and hence p(z, y)pn(dz)o.(y)dy — pi(z, y)u(dz)o(y)dy by weak con-
vergence. Therefore, the value of (2.10) converges as n — oo to

Q| Ve exp {5 [ (01, — 1)as}|
= QT sn {(Yt, pM) exp {% /Ot M (M, — l)dsH
= /}R , @ y)pe(z, y)ulde)o(y)dy.

Applying bounded convergence theorem to (2.9) we get inductively

1 t
gl—l,@jTtmf {<th MMt> exp {5/0 Ms<Ms - 1)d5}}
t
i Qe [V e {5 [ M0, — s}
1 Pijly 0

n—oo

for 1 <i+# j <m. Then the result follows from (2.9). O

Theorem 2.1 Let D(L) be the set of all functions of the form F,, ((1n) = (f, ™) with
[ € C3(IR™). Suppose that {X; :t > 0} is a continuous M (IR)-valued process such that
E{(1, X;)™} is locally bounded in t > 0 for each m > 1. If {X; : t > 0} is a solution of
the (L, D(L), u)-martingale problem, then

BU X = Qo [y e {5 [ M0, — s} (2.11)

for any t > 0, f € B(JR™) and integer m > 1,



Proof. Tt suffices to prove the equality for f € C3(JR™). In this proof, we set
Fum, f) = Fn(n) = (f, ;™). From the construction (2.6), it is not hard to see that
{(My,Y;) : t > 0} is generated by £* which is given by

1 m

CHmS) = B G0 1y 3 Fn 1 050) = )
CF s (1) — s — 1) oy (1), (2.12)

2

In the sequel of the proof, we assume that {X, : ¢t > 0} and {(M,,Y;) : t > 0} are defined
on the same probability space and are independent of each other. For any partition
Ap ={0=1ty <ty <--- <ty =1t} of [0,t], we have

E(f,X")— E{(Yt, pMy exp {% /Ot M,(M, — l)dSH
izn; (E{m_ti, XMy exp {% OHZ' M,(M, — l)dsH
—E{m_m, X exp {% /0 T MM, — l)dsH).

Let [|An]] = max{|t; — ti—1] : 1 < i < n} and assume [|A,|]| — 0 as n — oco. By the
independence of {X; : t > 0} and {(M,Y:) : t > 0} and the martingale characterization
of {(M,Y;):t >0},

i 3 (B[ X e {3
My, 1 t—1;
B\ (Vi o X0 e {5 [ M0~ 1)ds )
0

n t—t;
— lim ZE(eXp {% M, (M, — l)ds}E{FXt, (My_s, Yis,)

t—1;

M,(M, — l)dsH

_FXti (Mt—tifm }/;—tifl)
n 1
2 B e s ),

t—ti—1
E{/ E*FXt,(Mu,Yu)du‘X; ((M,,Y,):0<r<i— ti}D
t T

X;{(MT,YT):Ogrgt—ti}D

t—1;

M, (M, — l)ds}

t—t;—1

n t—1t;
= — lim ZE(GXP{% Ms(M, — l)ds}/

—t;
1i ' E Y :
= =i [ (e s [

= [ (e {5 [T MM - Vs (M, ) )

L*Fx,, (M., Yu)du)

t—1;

M,(M, — l)ds}ﬁ*FXti (M., Yu)l[t_m_til](u))du
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where the last step holds by the right continuity of {X; : ¢ > 0}. Using again the

independence and the martingale problem for {X; : ¢t > 0},

t—1;

—— My, 1
nh_rgo Z (E |:<}/;_ti17 Xti - >€Xp {§ 0
=1

M ¢ 1 t—1;
—E{m X >exp{§ M, (M, — l)dsH)
0

n t—1;
= lim ZE(GXp {% Ms(M,s — l)ds}

E |:FMtti1:Ytti1 (th) - FMtft-,thft-,l (Xtifl) M7 Y})
1 t—1;

~ Jim ZE(eXp{§ M, (M, — 1) ds} {/ LRy, v u)du‘M,YD
n—>ooi:1 0 -1 -1

t—1t;

— lim ZE(GXP{% ZMS(MS—I)dS}/Z LFy, . v, (Xu)du)
n—oo i1 0 ti1 i—1 i—1

M,(M, — l)dsH

n—00
i=1

t t—t;
~ Jin [ B( exp{% MM, = 1ds PEFu e, (X (w) )
0 n 0 i—1° i—1 3
t—

t 1 u
= [ B {5 [ M0 = 1ds R (X)) da,
0 2 Jo

where we have also used the right continuity of {(M,Y;) : t > 0} for the last step. Finally,

observe that

n 1 t—1;

nh_)rgoz (E {Q@—ti 17 XtMt i >€Xp {§
i=1

My, 1t
—F |:<}/;—ti 19 Xt - >€Xp {5/0 M8<M8 - 1)

0

M, (M, — l)dsH
d

)]

M, (M, — l)ds}

t—1;

1
- nh_)[g()ZE(FXt 1<Mt ti— 17Y; ti— 1)€Xp{2

1-ew{g [, Mt v ]

t—t
— — lim ZE<FX15 1(Mt by Yet, 1) exp{%/ Ms(M —l)ds}
n—00 0
1 t—1i_1
{— J A l)duD
2 Ji—g;
1 t—1t;
_ hm E (ZFXt (Moo Vit 1)exp{2 Ms(Ms—l)ds}
n—00 0

Mo (M = Dl ctyma () )



Since the semigroups (7)o are strongly Feller and strongly continuous, {Y; : ¢t > 0} is
continuous in the uniform norm in each open interval between two neighboring jumps of
{M; : t > 0}. Using this, the left continuity of {X: : ¢ > 0} and dominated convergence,
we see that the above value equals

1 t

t—u
- E(FXH(Mt_u,Yt_u)eXp{l/ M,(M, — 1)ds}Mu(Mu— 1))du.
2 Jo 2 Jo

Combining those together we get (2.11). O

Theorem 2.2 Let D(L) be as in Theorem 2.1 and let {w; : t > 0} denote the coordinate
process of C(|0,00), M(IR)). Suppose that for each € M(IR) there is a probability
measure P, on C(|0,00), M(IR)) such that P,{{l,w)™} is locally bounded in t > 0
for each m > 1 and {w, : t > 0} under P, is a solution of the (L, D(L), i1)-martingale
problem. Then the system {P,, : u € M(IR)} defines a diffusion process with transition
semigroup (P;)>o given by

/M(R)<f,u?>Pt(u,du)Q {<Yt7 exp{ /M —1)ds H (2.13)

Proof. Since the class {F,, s} separates probability measures on M(IR), the result
follows from Theorem 2.1; see e.g. Ethier and Kurtz (1986, p.184). O

3 Interacting-branching particle systems

In this section, we give a formulation of the interacting-branching particle system. We
first prove that equations (1.6) have unique solutions. Recall that ¢ € C'(IR) is Lipschitz,
g € C(IR) is square-integrable and p is twice continuously differentiable with p’ and p”
bounded.

Lemma 3.1 For any initial conditions z;(0) = x;, equations (1.6) have unique solutions
{z;(t) : t > 0} and {(x1(t), -+, z,,(t)) : t > 0} is an m-dimensional diffusion process with
generator G™ defined by (1.7).

Proof. Fix T > 0 and 4 > 1 and define {z¥(¢) : ¢ > 0} inductively by z{(t) = z;(0)
and

(1) = 2,0 +/ ))dBi(s +// W(dy,ds), t>0.
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Let I(c) > 0 be any Lipschitz constant for ¢(-). Then we have
B swp 1a 0 = af 0P~ [ B{lelat) (e @)Y
+ [OB{ [ ot = she) — oy~ 2 O) P
1P [ Bllat) — o )P e
12 [ B{Io(0) - plak(t) — " (0)

< Q@+ 10D [ Bl - 7 0P

Using the above inequality inductively we get

B{ sup [o5410) = 0P} < (el + pO)U? + 11T/

IA

0<t<T
and hence
E{ sup |zFH(t) — =¥ ()| > 2"“} < const - (2T)E(1(c)® + ||p" D" /K.
0<t<T

By Borel-Cantelli’s lemma, {z¥(t) : 0 < ¢ < T} converges in the uniform norm with
probability one. Since T > 0 was arbitrary, z;(t) = limj_.. 2¥(t) defines a continuous
martingale {z;(t) : t > 0} which is clearly the unique solution of (1.6). It is easy to
see that d{z;)(t) = a(z;(t))dt and d{x;, z;)(t) = plai(t) — z;(t))dt for ¢ # j. Then
{(z1(t), -+, x,(t)) : t > 0} is a diffusion process with generator G™ defined by (1.7). O

Because of the exchangebility, the G™-diffusion can be regarded as a measure-valued
Markov process. Let N(IR) denote the space of integer-valued measures on IR. For 6 > 0,
let Mp(IR) = {07 'c : 0 € N(IR)}. Let ¢ be the mapping from U®_; IR™ to My(IR) defined
by
1 m
C(mh"'vxm): 525%7 m > L. (31)
i=1

Lemma 3.2 For any integers m,n > 1 and any f € C*(IR"), we have

1 n m ”
Gan:f<C<x17 T ',‘Em)) - 2971 Z Z a<xla)faa<xl17 Ty xln)
.y

1 S 1
+ % Z Z B C<$la)c<$lﬁ)faﬁ<$l17 T xln)

—1 - . 1/
20n Z Z p<xla - $l5)fa5<l’l17 Sy lL’ln). (3.2)
bl ”'l



Proof. By (3.1), we have

Fn,f@(xl?"'?xm)): % Z f<$l17“‘7$ln)- (3-3)
I, ln=1
Observe that, for 1 < i < m,
d2
—QFn,f<C<x17" ) m Z Zfﬁxl17"'7 )7
dz; Y a1

where {---} = {forall 1 <Ul,---,l, <m with [, = lg = i}. Then it is not hard to see
that

m 2
ZC<$1)2dm2Fn,f<C<$l7 7xm))
=1 1

1 n m

Tgn > oo clm)elm) fug(en, - @) (3.4)

o 6:170‘¢6 ll:"':lnzlylcx:lﬁ

On the other hand, for 1 <i#£ j <m,

2 2
(d::dxj + dmi-idxj)F"’f«(xl’ ) = g_lnaﬁzlza#{z: fc/v/ﬁ Tiyy s T,y
where {---} ={forall 1 <[y, ---,l, <m with [, =i and [3 = j}. It follows that
m 02
i,jzlzi?fjp<$i - mj)mF"’f@(xl’ )

n m

% Z Z p(itla _LBlﬁ)f(;/ﬁ(LBlu"WLBln)'
a,B=La#B 1, dn—1la#ls

Using this and (3.4) with c(z;)? replaced by p(0),

m d2
plz; — ;) TRWI(QCITRRERE )
1-;1 dLEldLEJ ! !

+ on Z Z P(ﬂﬁla - Jilg)fgﬁ(iﬁlu o '7$ln)- (3-5)
, ool



Then we have the desired result from (3.4) and (3.5). O

Suppose that X (¢) = (x1(t),- -, 2, (t)) is a Markov process in IR™ generated by G™.
Based on (1.2) and Lemma 3.2, it is easy to show that ((X(¢)) is a Markov process in
My (IR) with generator Ay given by

- ) o P F(p)
Aoklu) = 2/ e 29/ Y) Gndy S o) )
d2 82 F (1)
2/ Y) Gudy 51z )My)u(dfv)u(dy)- (3.6)

In particular, if

F(M) - f<<¢17 ,u>7 T <¢n7 ,u>)7 we M0<B)7 (37)
for f € C°(IR") and ¢; € C*(IR), then

AF(n) = =3 F(1 ). Gk )

2=
219”211" (1.0 (B NS 1)
b X0 B oni) [ ple ~ DO ). 38)

Now we introduce a branching mechanism to the interacting particle system. Suppose
that for each x € IR we have a discrete probability distribution p = {p;(z) : 4 =0,1,---}
such that each p;(-) is a Borel measurable function on [R. We assume in addition that

(e}

p(z) =0, > ip(z)=1, (3.9)

=1

and

= ifp,-(x) —1 (3.10)

is bounded in z € IR. Let Iy(u,dv) be the probability kernel on My(IR) defined by

9# 1) [e%e)
1

/MQ(JR) Fw)Lo (. dv) OpJ (M +( - 1)9_15@)7 (3.11)

=1 j=

where € My(IR) is given by
1 Op(1)
H = 9 Z Oz, -

=1
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For a constant v > 0, we define the bounded operator By on B(Mjy(IR)) by

Bol*(p) = (u(1) A 0)0 ) (F'(v) = F(u)o(p. dv). (3.12)
In view of (1.6), Ay generates a Feller Markov process on My(IR), then so does Ly := A+
By by Ethier-Kurtz (1986, p.37). We shall call the process generated by Ly an interacting-
branching particle system with parameters (a, p, 7, p) and unit mass 1/0. Heuristically,
a(-) represents the speed of the spatial motion, p(-) describes the interaction between the
particles, v(+) is the branching rate and p = {p;(:) : ¢ = 0,1, - -} gives the distribution of
the offspring number. Note that we have added the factor A@ into the definition (3.12) of

By to make the branching not too fast even when the number of particles is large. If F is
given by (3.7), then BoF(1) equals

v <2u (1) h Z Z “pifas({Dr 1) +&idr, - (dny 1) + &i¢n)batbs, 1) (3.13)
a,B5=1j=

for some constant 0 < & < (j —1)/0. This follows from (3.11) and (3.12) by Taylor’s
expansion.

4 Continuous branching density

In this section, we shall construct a solution of the martingale problem of the SDSM with
continuous branching density by using the particle system approximation. Assume that
o € C(IR) can be extended continuously to IR. Let A and B be given by (1.5) and (1.8),
respectively. Observe that, if

F(M) :f<<¢17,u>7"'7<¢m,u>)7 ®e M<B)7 (41)
for f € C(IR") and ¢; € C3(IR), then

AP) = 53 Fi(n - (o)) ack )
b X S oni) [ ot~ D@ W), (12)
and |
BI ;z (B1:12)s (s )01 1) (4.3)

Let {0k} be any sequence such that 0 — oo as k — oo. Suppose that {Xt(k) 1t >0}is
a sequence of cadlag interacting-branching particle systems with parameters (a, p, v, p®),

14



unit mass 1/6; and initial states X® =y e My, (IR). In an obvious way, we may also

regard {Xt(k) .1 > 0} as a process with state space M(IR). Let o, be defined by (3.10)

with p; replaced by pgk).

Lemma 4.1 Suppose that the sequences {0y} and {(1, ur)} are bounded. Then (x® .
t > 0} form a tight sequence in D(|0,00), M (IR)).

Proof. By the assumption (3.9), it is easy to show that {(1,Xt(k)> ct > 0} is a
martingale. Then we have

Plaup(t, X9 > n} < {22)

t>0 n

for any n > 0. That is, {Xt(k) : t > 0} satisfies the compact containment condition of
Ethier and Kurtz (1986, p.142). Let £, denote the generator of {X* : ¢ > 0} and let F°
be given by (4.1) with f € C§°(IR") and with each ¢; € C3(IR) bounded away from zero.
Then

t
P - F) - [ (X P)ds, >0,
0

is a martingale and the desired tightness follows from the result of Ethier and Kurtz (1986,
p.145). O

Now we suppose that all functions in C3(/R) and their derivatives up to the second
order have been extended to IR by continuity. Then (4.1), (4.2) and (4.3) may also be
regarded as functions on M(IR). Let AF(u) and BF (i) be defined by the right hand side
of (4.2) and (4.3), respectively, and let LEF(u) = AF (i) + BF (1), viewed as functions on
M(R).

Lemma 4.2 Let D(L) be the totality of all functions of the form (4.1) with f € C3°(IR")
and with each ¢; € C3(IR) bounded away from zero. Suppose further that v,o, — o

A

uniformly and py, — p € M(IR) as k — oo. Then any limit point P,, of the distributions
of {Xt(k) .1 > 0} is supported by C(]0,00), M (IR)) and is a solution of the (L, D(L), j1)-
martingale problem.

Proof. We use the notation introduced in the proof of Lemma 4.1. By passing to a

e e (k)
subsequence if it is necessary, we may assume that the distribution of {X:" 1t >0} on
D([0,00), M(IR)) converges to P,. Using Skorokhod’s representation, we may assume
that the processes {Xt(k) .t > 0} are defined on the same probability space and the
sequence converges almost surely to a cadlag process {X; : ¢t > 0} with distribution P,

15



on D([0,00), M(IR)): see e.g. Ethier and Kurtz (1986, p.102). Let K(X) = {t > 0 :
P{X, = X;-} = 1}. By Ethier and Kurtz (1986, p.118), for each t € K(X) we have a.s.

lim x%® = x,.
Recall that f and f;; are rapidly decreasing and each ¢; is bounded away from zero. Since
Year, — o uniformly, for t € K(X) we have a.s.
lim L P(XM) = LF(X,)
boundedly by (3.8) and (3.13). Suppose that {H;}*, € C(M(IR)) and {t;}74! ¢ K(X)
with 0 < t; < -+ < t, < t,;1. By Ethier and Kurtz (1986, p.31), the set K(X) is at
most countable. Then

n
A

E{ [F(thﬂ) C (X)) — /: EF(Xs)dS} 1}1 Hi<Xti)}

- E{F(thH) H1 Hi<Xn)} — E{F(th) II Hi<Xti)}

=1
[ N n
[ E{ﬁF(Xs)HHi(Xti)}ds
tn i=1
- i m{POe) Tl 0]} - i {0 [0

th41 n
T E{ﬁkF(X;’f)) 11 H,-(Xt(f))}ds
=1

k—oo Jt,

k—oo

trnt1 n

= Jim B{ [P - Fx®) - [T re®)ds| T
n =1

= 0.

By the right continuity of {X; : t > 0} the equality

&l

holds without the restriction {t;}7%' ¢ K(X). That is

n
~

F(X) = POG) = [ 2P| TLHOG) |~ 0

i=1

FX) - F(Xo) - [ EP(X)ds, 1> 0,

is a martingale. As in Wang (1998, pp.783-784) one can show that {X; : ¢t > 0} is in fact
a.s. continuous. O
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Lemma 4.3 Let D(L) be as in Lemma 4.2. Then for each ji € Mﬁﬁ%), t
bility measure P,, on C(|0, c0), M (IR)) which is a solution of the (L, D(L
problem.

ere is a proba-
p)-martingale

h
),

Proof. 1t is easy to find px € My, (IR) such that pur — p as k — oo. Then, by Lemma
4.2, it suffices to construct a sequence (g, p®)) such that 0, — o as k — oo. This is

elementary. One choice is described as follows. Let 7. = 1/vk and o = Vk(o + 1/VE).
Then the system of equations

k k k
o
208 1 kp 1
R
has the unique solution

(k):0k+k—1 (k):k‘—l—O'k (k) _ or— 1
Po 2%k P2 2(]6’—2) v Dg k,<k,_2)7

where p(-k) is nonnegative for sufficiently large k& > 3. O

1

Lemma 4.4 Let P, be given by Lemma 4.3 and let {w; : t > 0} denote the coordinate

A

process of C'(|0,00), M(IR)). Forn>1,t >0 and p € M(IR) we have

PA(Lw)™) < (L + gnln—Dlloll [ Puf(wy™"}ds.

Therefore, P,{(1,w)"} is a locally bounded function of t > 0 and P, is also a solution
of the (£, D(L), )-martingale problem if D(L) is the union of all functions of the form
(4.1) with f € C°(IR™) and ¢; € C3(IR) and all functions of the form F,, ;(u) = (f, u™)
with f € C3(IR™).

Proof. For any k > 1, take fr € C§°(IR)) such that fi(z) = 2™ for 0 < z < k and
7(2) <n(n—1)2""2for all 2> 0. Let Fi(1) = fi({1, 1)). Then AF, () = 0 and

BI() < oo — Dol m)"".
Since
FL(X)) — Fr(Xo) — /OtﬁFk(<1,Xs>)ds, >0,
is a martingale, we get

Pufel(LX0") = (L) + gatn—Dllol [ P, X, —ds

2
1 ¢ _
< (L) 4 gl = Dol [ P, X" )ds.
Then the desired estimate follows by Fatou’s Lemma. O

17



Lemma 4.5 Let P, be given by Lemma 4.3. Then for p € M(IR) and ¢ € C3(IR),

1 ¢ /!
Mt(QS) = <¢7 wt> - <¢7 ,u> - 5 0 <a¢ 7ws>d37 13 Z 07 (44)
is a P ,-martingale with quadratic variation process
t t
_ 2 A 2
M@ = [ (o wds+ [ ds [ (g(z =) w.)d (4.5)

Proof. 1t is easy to check that, if F,,(u) = (@, u)", then

Do,y [ oz =0 e

(¢, )" {09, ).

LF) = (o) ad! ) +
n(n—1)

T

It follows that both (4.4) and

t

M) = (6w = (o) = [ (6.w.) 0o w.)ds
a /Ot ds/ﬁ@(»z — )¢ w, ) dz — /Ot<0(;527 w,)ds (4.6)

are martingales. By (4.4) and [td’s formula we have

(6,00 = (00 + [ (o) ad w)ds 2 [ (6,0 )AM0) + (M) (@)

Comparing (4.6) and (4.7) we get the conclusion. O

Observe that the martingales {M(¢) : t > 0} defined by (4.4) form a system which is
linear in ¢ € C3(IR). Because of the presence of the derivative ¢’ in the variation process
(4.5), it seems hard to extend the definition of {M(¢) : t > 0} to a general function
¢ € B(IR). However, following the method of Walsh (1986), one can still define the
stochastic integral

/Ot /ﬁ% o(s,x)M(ds, dx), t>0,

if both (s, z) and ¢'(s, z) can be extended continuously to [0, 00) x [R. With those in
hand, we have the following

Lemma 4.6 Let P, be given by Lemma 4.3. Then for any t > 0 and ¢ € C3(IR) we
have a.s.

(6, w) = (Togp, ) + /0 t /R o oo(2)M(ds, dz).
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Proof. For any partition 4, == {0 =1y <t; <--- <t, =t} of [0,t], we have

<¢7 wt> - <ﬁ¢7 ,u> - Zn:<ﬁ—tz¢ - Tt—ti71¢7 wti>
=1

-+ Z[<Tt—ti71¢7 wti> - <Tt—ti71¢7 wti71>]'

=1

Let [|A]| = max{|t; — t;_1] : 1 <i < n} and assume ||A,|| — 0 as n — oco. Then

n N N t—t;—1 .~ A N
hm Z<E—tz¢ _Tt—ti,1¢7 U}ti> = — hm Z/ TTt—tiG¢7 wti>ds

n—o00 4 n—oo

Using Lemma 4.5 we have
nh_{gloz Tt t 1Oy Wy > <Tt—ti,1¢7 wti,lﬂ

- nh_g)loZ/ / Tiy, &M (ds, dx) + Tim o Z/t o Tii,_,9)", ws)ds
- /0 /B TiosoM(ds, da) + 5 /0 (a(Tr—s0)", w,)ds.

Combining those we get the desired conclusion. O

Theorem 4.1 Let D(L) be the union of all functions of the form (4.1) with f € C$*(IR")
and ¢; € C*(IR) and all functions of the form F,, ;(u) = (f, u™) with f € C3(IR™). Then
for each yu € M(IR) there is a probability measure P, on C(|0,00), M(IR)) which is a
solution of the (L, D(L), u)-martingale problem.

Proof. Let P, be provided by Lemma 4.3. The desired result will follow once it is
proved that

P, {w:({0})=0forall t € [0,u]} =1 (4.8)
for every u > 0. For any ¢ € C3(IR), we may use Lemma 4.5 to see that
~ A t A
M (6) i (Tueetw) = (o) = [ [ TuesoM(ds,do), ¢ € [0,u),
is a continuous martingale with quadratic variation process

(M () — /Ot<0(Tu_s¢)2,ws>ds+ / ' ds [ {oe =T @) widz, € (0,0
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By martingale inequalities, we have

Pu{ sup [(To_sp, wy) — <Au¢7ﬂ>|2}

[P s 14 [ ds [ Pullale — Tuns(6) )
4/ (T )2, 1T, ds+4/ de/uPu{ﬂ,ws><Tu_s(¢’)2,ws>}ds

< 4 [No(Tuwo ulds + 4l )° [ g(=Fdz [* PL{(1Lw))ds.

IA

IA

Choose a sequence {¢x} C C5(IR) such that ¢x(-) — 1gay(-) boundedly and ||¢}| — O as
k — oo. Replacing ¢ by ¢ in the above and letting k — oo we obtain (4.8). O

5 Borel branching density

In this section, we shall use the dual process to extend the construction of the SDSM to
a general bounded Borel branching density. Given o € B(IR)", let {(M;,Y:) : t > 0} be
defined as in section 2. Choose any sequence of functions {03} C C(IR)" which can be

extended continuously to Rand oy — o boundedly and pointwise. Let {Xt(k) ¢t >0} be
an SDSM with parameters (a, p, o) and initial state p € M(IR).

Theorem 5.1 Suppose that puy — p in M (IR) as k — oo. Then the distribution of Xt(k)
converges to a probability measure Pi(u,-) on M (IR) determined by

/M(R)<f,um>Pt(M,du)Q {<Y;7 GXp{ /M DdSH' (5.1)

Moreover, (P;):>o is a Markov transition semigroup on M (IR).

Proof. If we replace o by o, then (5.1) defines the transition semigroup of the SDSM
with parameters (a, p, 03) which exists by Lemma 4.4 and Theorems 2.2 and 4.1. By
Lemma 2.1 it is easy to see that

lim i( (Yo ™ exp{ / M, (M, — l)dSH)l/m = 0.

m—0o0 m
By Lemma 2.2 and Dawson (1993, p.45), (5.1) really defines a probability measure P(u, -)

on M (IR) which is the limit distribution of Xt(k) as k — oo. To check the Chapman-
Kolmogorov equation one simply observes

/M(R) P:(u, dn) /M(R)< FU™ P, dv)
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= /M(R) Q?n,f{<Y%7an>exp{%/otMs(Ms— l)dsHPr(u,dn)

= Qny :/M(R)MWMWPT(M, dn) exp {% /Ot M,(M, — l)dSH

— Q@ (e exp {5 [0, = s} exp {5 [ M0, = 1)as
= Q. :<}/r+t7 (M) exp {% /OTH My(M, — l)dSH

=y Pl ).

Therefore, (5.1) defines a Markov transition semigroup (FP;) on M (IR). O

Lemma 5.1 The sequence {Xt(k) 1t >0} in Theorem 5.1 is a tight in C([0, c0), M(IR)).

Proof. Since {(1, Xt(k)> .t > 0} is a martingale, one can see as in the proof of Lemma
4.1 that {Xt(k) .t > 0} satisfies the compact containment condition of Ethier and Kurtz

(1986, p.142). Let Ly denote the generator of {Xt(k) :t >0} and let F' be given by (4.1)
with f € C§°(IR"™) and with ¢; € C3(IR). Then

t
FOX®) = F(x$) - / LiF(X®ds, t>0,
0

is a martingale. Since the sequence {0} is uniformly bounded, the desired tightness
follows from Lemma 4.4 and the result of Ethier and Kurtz (1986, p.145). O

Theorem 5.2 The transition semigroup (P;):>o defined by (5.1) has a diffusion realiza-
tion. Let D(L) be the union of all functions of the form (4.1) with f € C3°(IR") and ¢; €
C?*(IR) and all functions of the form F,, ;(u) = {f, u™) with f € C3(IR™). If {X; : t > 0}
is a diffusion process with semigroup (P,)o and initial state Xo = p € M(IR), then it
solves the (L, D(L), p)-martingale problem.

Proof. Let {Xt(k) .t > 0} be as in Theorem 5.1. By passing to a subsequence, we

may assume that the distribution P of {Xt(k) :t > 0} converges as k — oo to some
probability measure P on C/([0, 00), M(IR)). Let ¢,, € C*(IR)* be such that ¢,(z) = 0
when ||z|]] < n and ¢,(z) = 1 when ||z|| > 2n and ||¢},]] — 0 as n — oo. Fix u > 0
and let m, be such that ¢, (z) < th¢n(x) for all 0 <t < w and ¢ € R. For any
a > 0, the paths w € C(|0,00), M(IR)) satisfying supy<;<,(@m, w:) > a constitute an
open subset of C(|0, 00), M (]?%)) Then, by an equivalent condition for weak convergence
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and a martingale inequality,

P{ sup w({(D)}) > a}

0<t<u
< P{ sup {@m, , we) > a}
0<t<u
< limiank{ sup (@, , wy) > a}
k—oo 0<t<u
<

h]gn inf Pk{Q sup <Tu_t(bn,wt> > a}

0<t<u

4 A
S sup _QPk{<Tu—t¢n7wt>2}
E>1 &
4 . A 4 .
< sup _QPk{|<Tu—t¢n7wt> - <Tu¢n7:uk?>|2} -+ sup _2<Tu¢n7:uk>2
k>1 & E>1 &

As in the proof of Theorem 4.1, one can see that the right hand side goes to zero as
n — oo. Then P is supported by C(|0, 00), M (IR)) and P;, — P by the weak convergence
of probability measures on C([0,00), M(IR)). Using Theorem 5.1 one can show that P
satisfies the Markov property. The strong Markov property holds since (F;)i>o is Feller.
To see the second assertion, one may simply check that (£, D(L)) is a restriction of the
generator of (P;)i>o. O

6 Rescaled limits

In this section, we study the rescaled limits of the SDSM constructed in the last section.
Given any 6 > 0, we defined the operator Ky on M(IR) by Keu(B) = u({0z : = € B}).
For a function h € B(IR) let hy(z) = h(0z).

Lemma 6.1 Suppose that {X; : t > 0} is an SDSM with parameters (a,p,0). Let
X? = 072KpXyg2y. Then {X? :t >0} is an SDSM with parameters (a, pg, 0g).

Proof. We shall compute the generator of {X? : t > 0}. Let F'(u) = f({¢, 1)) with
f e CP(R) and ¢ € C*(IR). Note that FoKy(1) = F(Kou) = f({¢10, 1t)). By the theory
of Markov processes, { K9 X; : ¢ > 0} has generator £? such that L°F = L(F o Kg)(K1 o).
Since

d? 1
(@ o(e) and Z50u0(@) = 750 ol)

| =

d
T e(z) =
it is easy to check that

1

0 —_—
LOF(p) Ve

(¢, 1)){ad”s )
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2ggf"«ax 1) [ pole =)o (@) (n)u(d)u(dy)
ol ) oud®, ).

By a similar calculation one may check that {#72KyX; : t > 0} has generator £y such
that

LoF () = (&, 1)) aod”, 1)

202
1
gl (0 m)) [ pole = )6 (@) ()uldw)uldy)
Fors (606 ).
Then {X? :t > 0} has the right generator. O

Theorem 6.1 Suppose that {X,; : t > 0} is an SDSM with parameters (a, pg, 0g) with
lc(z)| > ¢ > 0 for all x € IR. Then there is a A x A x P ,-measurable function X(w, z) such
that P, {w € C(|0,00), M(IR)) : X¢(w,dx) is absolutely continuous with respect to the
Lebesgue measure with density X (w,x) for A-a.e. t > 0} = 1. Moreover, for A x A-a.e.
(t,x) € |0,00) X IR we have

B X2} = [ vz 0)u(de)u(dy)
+2/ ds/ (dy) / 2)pi(z, 2 2, 1)dz. (6.1)
Proof. Let r1 > 0 and r, > 0. By Theorem 2.1 we have

E#{<gelr1 (:I?, ')7 Xt><gelr2 (:I?, ')7 Xt>}
= B, {05, (z,") ® g4, (z,-), XP)}
= (TP05,(2,) © geyy (2, ), 11°)

+2/ Tt—s(leTs gerl (LB, ) ® g€1T2 (LE, ')7 M2>d8
= [ TR0 (@) © gl (o), ldy(dz)
2 1 . 1 .
12 [Lds [ pldy) [ o()T20k, (5, g, (5 ) (e 2oy, ).
Observe that

T2 95, () @ gery (2, )y, 2) = /}R  Gers (2, 21)08, (2, 22)D7 (y, 25 21, 2)ddze,
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which converges to p?(y, z; , z) boundedly as 7, — 0 and 7, — 0. Note also that

/ a<z>ngsm<x, )@ gl (@), Il 2)dz
< const- o= [ P, (@52l )5

< const - ||U||$ge(t+r1)<y7 )

<

1
const - ||0||ﬁ

By dominated convergence theorem we get

rllgrLO E“{<ger1< )7Xt><g€17‘2<x7 )’Xt>}

= | s opdyu(d:)
+2/ ds/ (dy) / Pz, 2z, )iy, 2)dz.

Then it is easy to check that

T
tim [t [ B{{gh, (5,) = b (o), X0 b = 0
R

r1,r2—0 Jo

for each T > 0, so there is a A X A X P,-measurable function X;(w, z) such that (6.1)
holds and

lir%<g€1r1(x, ), Xe) = Xe(w,r) in LPAx Ax P,). (6.2)

/0 ' E“{ (6, X2) — /B () X (2)d Q}dt
< /OTE“{@—PETQS,XQQ}dt
s B, {|(Pd X0 = [ o)X, (a)ds

B|(Pes. X0~ [ o) Xwyte] |
= B| [ Xido) [ o)k, 0)do ~ [ o(0)Xilw)da
&
E

Observe that

Q}dt, (6.3)

where

}

/]Rnglr('v r), Xy) — Xe(2)]p(z)dz 2}
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By this and (6.2) we get

T 2
lim E#{ }dt — 0,
r—0 Jo

On the other hand,

lim B, {(¢ = Pur, X)*} < lim B,, {{|¢ = Pao, X,)} = 0

(P, X0) = [ 6(w)Xi(x)da

so letting » — 0 in (6.3) we see that

/OTE“{ Q}dto,

completing the proof. O
By Theorem 6.1, for A x A-a.e. (t,z) € [0,00) x IR we have

(6, X:) = | o@)Xi(a)da

B{XilaP} < const- [ (L) [ ol(opn(d)
oy WY M PACRTANCRTE
< const [ (L) + Vil [ gttt (6.4)

Theorem 6.2 Suppose that {X; : t > 0} is an SDSM with parameters (a, p, o) with
lc(z)| > € >0 forall r € R. Let X! = 072KpX¢2y. Assume a(x) — ag, o(x) — 0p and
p(z) — 0 as |z| — co. Then the conditional law of {X{ : ¢ > 0} given X§ = u € M(IR)
converges to that of a super Brownian motion with underlying generator (as/2)A and
uniform branching density os.

Proof. Since ||og|| = ||o|| and X¢ = p, as in the proof of Lemma 5.1 one can see that the
family {X? : ¢ > 0} is tight in C([0, 00), M (IR)). Choose any sequence 0 — oo such that
the law of {X?* : ¢ > 0} converges to some probability measure Q@ on C/([0, ), M(IR)).
We need to prove that Q is a solution of the martingale problem for the super Brownian
motion. By the representation of Skorokhod, we can construct SDSM’s {Xt(k) ct > 0}
and {X° : ¢ > 0} such that {X® : ¢ > 0} and {X? : ¢ > 0} have identical laws,
(X .t > 0} has the law Q and {X® : ¢t > 0} converges a.s. to {X” : ¢t >0} in

C(]0,00), M(IR)). Let F(u) = f({¢, p)) with f € C(IR) and ¢ € C*(IR). Then for each
k>0,

t
FX®) — F(x®) - / LF(XP)ds, t>0, (6.5)
0
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is a martingale, where L}, is given by
1
ﬁk:F<,U) — if/<<¢7:u>)<a0k¢”7:u>
1
ol (1) /}R , Po,(z — )¢ ()¢ (y)p(dx ) u(dly )

I (00, 1)) 00,07 1)

Observe that
[ BUS (6, X9 laa, — asle”, X9 }ds
< 1N [ B{a, — aal, X s
< M) [ (Tokaa, — aol, mhds
< M) [ ds [ ) [ Jaa,(0) = aolps(, )iy

which goes to zero as k — oo. In the same way, one sees that
t
| BT (0, X)) oo, — a0l X)) ds

also goes to zero as k — oo. Using the density process of {Xt(k) : t > 0} we have the
following estimates

E|f"({¢, X*)) /R L Po (@ = )¢ ()¢ () X P (d) X (dy)

< 70 [ loan o = )16 (@6 ) BAXD (@)X D)} dody
< 7 [ (o = )19/ @) ) BAX D (@} BLX O g 2}y

1/2
< ([, (o = )Pl )0 ) Pdndy [ B @} BAX O ()7 dody

1/2
< I [ oo = 9Pl @) w)Pdady ) [ BLXEO @),
By (6.4), for any fixed t > 0,
/0 ds /R B{X® ()2 de

is uniformly bounded in k& > 1. Since py, (z —y) — 0 for A x A-a.e. (z,9) € IR* and since
o]l = llpll, we have

i [ o, (= )Pl ()6 () Py = 0
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when ¢/ € L*()\). Then letting k — oo in (6.5) we see that {Xt(o) .t > 0} is a solution of
the martingale problem of the super Brownian motion. O

7 Measure-valued catalysts

In this section, we assume |c(z)| > € > 0 for all z € IR and give construction for a class
of SDSM with measure-valued catalysts. We start from the construction of a class of
measure-valued dual processes. Let Mp(IR) denote the space of Radon measures ¢ on IR
to which there correspond constants b(¢) > 0 and [(¢) > 0 such that

([, 2+ 1)) <bOIC),  ze R (7.1)

Clearly, M (IR) contains all finite measures and all Radon measures which are absolutely
continuous with respect to the Lebesgue measure with bounded densities. Let Mp(IR™)
denote the space of Radon measures v on JR™ such that

videy, - dey) = f(o1, -y xm)dey, - - deg—1((dx,,) (7.2)

for some f € C(IR™) and ¢ € Mg(IR). We endow Mg(IR™) with the topology of vague
convergence. Let Ma(IR™) denote the subspace of Mp(IR™) comprising of measures
which are absolutely continuous with respect to the Lebesgue measure and have bounded
densities. For f € C(IR™), we define A} € Ma(IR™) by A7 (dz) = f(x)dr. Let Mp be
the topological union of {Mg(IR™) :m =1,2,---}.

Let n € Mp(IR) and let &;; be the mapping from M4 (IR™) to Mp(IR™™") determined
by

@mjj(dlﬁl, s ,dlEm_l)
— ,LL/<$1, RN mm_17 U mm_17 SR mm—Q)dml e dxm—277<d$m—1)7 (7_3)

where 1/ denotes the Radon-Nikodym derivative of p with respect to the m-dimensional
Lebesgue measure, and x,,_1 is in the places of the ith and the jth variables of ¢’ on the
right hand side.

Lemma 7.1 If ¢ € Mp(IR) satisfies (7.1), then

[ plaw)C(dy) < ——=h(e.G;), 120z (7.4)

1
v 2met

where

h(e, ¢;t) = const - b(() {2[(() +V 27ret}, t>0. (7.5)
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Proof. Using (1.9) and (7.1) we have

[ e y)(y) < const- [ gule.y)C(dy)
() FU(C)*
V2met ,;)GXP{_ 2¢et }

< const - ;%{2[(()+/}R€Xp{ —y—}dy}

< const - o) {2[(<)+\/ﬁ},

2met

< const -

as desired. O

Lemma 7.2 Let n € Mg(IR). For any integer n > 1, define n,, € M4(IR) by

n(d) — n((ilfj)ﬂ (¢ +71%)l<77)})7(67i7:§7 e (ilfj)’ (i+i)l(n) | (7.6)
where i — -+, —2,—1,0,1,2,--. Then 1, — 1 by weak convergence and
[,z + 1)) <26()l(n), =€ R (7.7)
Proof. For any = € IR there is an integer i such that
a4 1) C (”7(;7), L) i)
Therefore, we have
mler i) < o (N2, LEDI )
_ n((zlfj)?<z’+711)l<n)+l<n)D
< (40 )
< 2b(n)l(n)
That is, (7.7) holds. 0

We may also regards T;™ as a semigroup of operators on Mp(IR™) determined by

T v(dx) = /}Rm i (z, y)v(dy)dz, t>0,2e R™ (7.8)
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Of course, T{™ maps Mp(IR™) to M4(IR™), and for f € C'(IR™) we have
TN (dx) = T f(z)dz, t>0,zeR™. (7.9)

Suppose that {M, : t > 0} is a nonnegative integer-valued pure jump Markov process
with transition intensities ¢; ; such that ¢;;—1 = (i — 1)/2 and ¢; ; = 0 for all other pairs
(i,7). Let 70 = 0 and 7ag, = 00, and let {7 : 1 < k < My — 1} be the sequence of jump
times of {M; : t > 0}. Let {I% : 1 < k < My — 1} be a sequence of random operators
which are conditionally independent given {M; : ¢t > 0} and satisfy

P(I= @M () =1} = gy 1<i# <L (7.10)

where @, ; is defined by (7.3). Then
My

Zy = ﬂﬂfiﬁFkTT]\ﬁ%;qu T, T 7y, T << T, 0< k< Mo — 1, (7.11)

defines a Markov process {7, : t > 0} taking values from M . Of course, {(My, Z;) : t >
0} is also a Markov process. We shall suppress the dependence of {7, : ¢ > 0} on 5 and
let Q7, , denote the expectation given My = m and Zy, = v € Mp(R™).

Lemma 7.3 Ifn € Mp(R) and if v € Mg(IR™) is given by (7.2), then
1
n 1 My - o
(e {3 [, — 1yds)]
m—1
< e G [{ Vi S 2t — 1) (e 1) ] (7.2
=1

(Note that the left hand side of (7.12) is well defined since 7, € M4(IR) a.s. for each
>0 by (7.11).)

Proof. For 0 <k <m — 1 set

/ Lt
Ap = Zz,l/ {<Zt7 MMt>eXp {i/ M8<M8 - 1)d8}1{7k§t<7'k+1}:|'
0
By (7.2) and Lemma 7.1,
Ao = (@) 1™y < | flIAGe, G O(L, )™ VL.

By the construction (7.11), for 1 <k <m — 1, A, is equal to

m!(m —1)! ¢ t t _ _ m —
2k<m _ k)l(m — k- 1)[ /0 dsl /51 d82 Y /Sk1 E<<ﬂ—skkpk Y T52—511F1Ts1 V)/7 ¢ k>d8k
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Observe that
t dSk < 2\/5 t dSk < 4\/%
k1 VU= 8i\/Sk — Sk—1 AT — Sk—1 Jtrs 2 VE— 8 T T — Sk1

By (7.8) we have Tk 7% < )\”h” for h € C(IR™*). Then using (7.13) and Lemma
7.1 inductively we get

m!(m — Y| f]| hie, 7 (1, g™+

A < 25(m — k) (m —k —1)! dsl/ dsg - / \/ﬁ o1 dsy
2*m!(m — DY ' ok .
(= )l — ke — D1 (& GOR(em ) (L )™

< 2"mF(m — DF[| £l e, G (e, m; ) (L, )=,

Then we have the conclusion. O

(7.13)

Lemma 7.4 Suppose n € Mp(IR) and define n, € M4(IR) as in Lemma 7.2. Assume
that u, — p weakly as n — oco. Then we have

{<Z£, My exp{ /M —l)dsH
= JLIQOQ%,V{<Z£7 exp{ /M —1)ds H (7.14)

Proof. By the construction (7.11) we have

VAN exp{ /M —l)dSH
)

= <(Tth n) (7.15)
1 U t . , M 1 t—u
+ 2 > / Q.- 1,¢ijTﬁnu|:<Zt WY e “>exp{§/ Ms(Ms—l)dSHdu.
ij=1,i45 "9 0

For any h € C(IR?),

Lo {<Z£7 exp{ / M,(M, — 1)ds H
= ’IT%%BZL exp{ / M, (M, — 1)ds H
= [ e (e dy). (7.16)

If f,g € C(IR)" have bounded supports, then we have f(z)u,(dz) — f(z)u(dz) and
g(y)n.(dy) — g(y)n(dy) by weak convergence, so that

lim [ f(2)g()pe(z, y)pn(d)n.(dy) = /]RQ f(@)g(@)pe(z, y)p(dz)n(dy).

n—oo RQ
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Since {u,} is tight and 7, satisfies (7.7), one may see that {p;(x,y)p.(dx)n.(dy)} is a
tight sequence and hence p;(, y) i, (dx)n.(dy) — pi(x, y)p(dx)n(dy) by weak convergence.
Therefore, the value of (7.16) converges as n — oo to

@ g [y {5 [[ o001 = 1)}
- Ql@gl)\Q {<Z£7 Mt GXp{ /M l)d H
= [ by wpdw y)(den(dy).

Applying Lemma 7.3 and bounded convergence we get inductively from (7.15) that

Q?n 1,8, T 1/|:<Z£7 Mt GXP{ /M —1 dSH
— lim Q" g g V{<Z£,unf>exp{§ /0 MS<M5—1)dsH

n—oo

for 1 <i+# j <m. Then the result follows from (7.15). O

Let n € Mp(IR) and let 7, be defined as in Lemma 7.2. Let o,, denote the density

of n, with respect to the Lebesgue measure and let {Xt(") .t > 0} be an SDSM with
parameters (a, p, 0,) and initial state u,, € M(IR).

Theorem 7.1 Assume that p,, — p weakly as n — oo. Then the distribution of Xt(")
converges to a probability measure Pi(u,-) on M (IR) determined by

1 gt
m _ n (L _ —
Lo FV VP 0) = Qe | Zio iy exp {5 [ M0 = s ] (71)
Moreover, (P,);>0 form a Markov transition semigroup on M (IR).

Proof. Clearly, if we replace 1 by 7,, then (7.17) defines the transition semigroup of
the SDSM with parameters (a, p, 0,). By Lemma 7.3 it is easy to see that

lim l(Q?n,)\}n {(Zé, My exp {% /Ot M (M, — l)dSH)l/m =0.

m—0o0 m

By Lemma 7.4 and Dawson (1993, p.45), (7.17) really defines a probability measure P(u, -)

on M(IR) which is the limit distribution of Xt(") as n — o0o. The Chapman-Kolmogorov
equation can be checked as in the proof of Theorem 5.1. O
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