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ABSTRACT. We establish a mathematical framework that formally validates the two-phase “super-

population viewpoint” proposed by Hartley and Sielken (1975), by defining a product probability space

which includes both the design space and the model space. We develop a general methodology that

combines finite population sampling theory and classical theory of infinite population sampling to account

for the underlying processes that produce the data. Key results in this article are: the sample estimator and

the model statistic are asymptotically independent; if a sequence converges in design law, it also converges

in the law of the product space; and the distribution theory of the sample estimating equation estimator

around a super-population parameter. We also study the interplay between dependence and independence

of random variables when viewed in the design space, the product space and the model space and apply it

to show formally that under a “simple random sample without replacement” design, we can “ignore” the

design and work on the realm of the model space, but that under “simple random sample with replacement”

we cannot ignore the design.

Key words: joint design and model-based inference; product space.

1. Introduction

Classical sampling theory is concerned with inference for finite population parameters. This enables

us to work exclusively within a sample probability space, which we design and control, and therefore

it is completely known to us. However, there are many situations when we have to resort to

postulating a model, e.g., when we wish to draw conclusions on a more general population than the

finite population from which we obtained the sample or to perform a test of hypothesis. Even for

descriptive analysis in a finite population, we need a model when we have to deal with non-response,

small area estimation or measurement errors. Once we incorporate a general population model in our

framework, our inference procedures would ideally have to account for the design (unequal selection

probabilities, dependent selection indicators, etc.), other survey processes (non-response adjustment,

calibration, etc.) and the model defining the relationships amongst the variables being studied.

To this purpose, Hartley and Sielken (1975) introduced the “super-population“ approach to describe

the relationship between the infinite population ( also called super-population) and the finite

population from which we select the sample. It regards the sample selected by the surveyor according

to a specified design, as the result of a two-phase procedure, where the super-population generates

the finite population that could have been observed, had we taken a census. Many authors worked
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within the two-phase framework and accounted for the variability due to the design and the model

by means of the “anticipated variance”. The contributions of Fuller (1975), Isaki and Fuller(1982),

Godambe and Thompson (1986), Korn and Graubard (1998), Pfeffermann and Sverchkov (1999),

Binder and Roberts (1999), Rodríguez(2001), Molina, Smith and Sudgen (2001), are just a few

among the vast literature on the subject.

Fuller (1975) established large sample properties of the sample regression estimator around the

model parameter with data obtained from stratified cluster samples. His approach could only be

applied to designs with “simple random sample without replacement”(SRSWOR) in the first stage

sampling within strata. A general approach to estimation of model parameters based on samples

drawn from complex surveys has not yet been formally established, even in the case where the (first

stage) sampling rate is negligible. As an illustration, let us consider the case of the sample mean.

We have:

, (1.1)

where is the super-population mean, are the finite population size and mean respectively,

and are the sample size and sample mean, respectively.

The large sample properties of the first term on the right hand side of (1.1) have been studied for

many designs. Conditions were given for the distribution of the sample mean around the finite

population mean to be approximately normal with mean zero and design variance Γ (design-basedd

CLT): for SRSWOR and rejective sampling with varying probabilities by Hájek (1960, 1964), for

designs by Rosén (1972, 1997), and for stratified multistage probability proportional to size

designs, by Krewski and Rao (1981). To infer from this result a design-based CLT for the left hand

side of (1.1), we would have to assume not only that the sampling rate converges to zero, but

also that the sequence of numbers is bounded as and . As a sequence of numbers,

this last condition is very restrictive. However, as a sequence of sums of independent, identically

distributed (i.i.d.) random variables in the super-population, is bounded in probability

and the second term of the right hand side above would converge to zero in the probability of the

model as the sampling rate converges to zero. Thus, when we study the asymptotic properties

of the sample means around the super-population mean, it makes more sense to integrate the model

and the design under the same umbrella.
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In this article, we establish a mathematical framework which formally validates the two-phase

“super-population viewpoint” advocated by Hartley and Sielken (1975) by defining a product

probability space which includes both the design space and the model space (Definitions 4.1 and

4.2). The product space makes it possible to consider joint convergence of design-based estimators

and model based estimators, which are originally defined on different probability spaces (Theorem

5.1). In this set-up, Remarks 4.3 and 5.1 show that the design probability and the distribution of a

design-based estimator are second phase concepts, i.e., conditional probabilities given minimal

information contained in the model. We describe a general methodology that combines finite

population sampling theory and classical theory of infinite population sampling to account for the

underlying processes that produce the data. We show that this approach enables us to prove the CLT

for estimating equation estimators derived from a complex sample and make inference on a super-

population parameter, for sampling designs other than those presented in Fuller(1975) (Section 6).

We also show formally that when dealing with survey data we cannot ignore the effect of “with

replacement” (WR) designs, even if they do not induce selection bias (Proposition 4.1, Example 4.5).

Other applications enable us to adapt survival analysis methods to be used with complex survey data

(see Rubin-Bleuer (2001)). We can also accommodate in the product space super-population

inference techniques used by other authors. In general, we could apply this approach to most

situations where we have a two phase randomization process, e.g. a two-phase sampling selection

in a finite population.

We remark that in order to obtain the total (anticipated) variance in (1.1) we must impose (model-

based) conditions on the super-population model, which survey statisticians would rather avoid. At

the very least, some form of model-based independence is needed. Hence many authors assume that

the sampling rate is small enough so they can ignore the variation due to the model component.

However, the examples given by Korn and Graubard (1998) show that we should not dismiss the

second term in the total variance without checking first that it is indeed sufficiently small relative

to the first term. Even an approximate knowledge of the model component of the variance may be

used to our advantage in designing a survey.

The article is organized as follows: Sections 2 to 5 below develop the tools necessary to do inference

while integrating the design into the model, and Section 6 is an application of the product space
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methodology. In Section 2 we give a slightly more restrictive definition of the sample design and

estimator (Definitions 2.3, 2.4) in order to view them subsequently as random variables in the super-

population(Definition 4.2, Remark 4.1). In Section 3 we adopt the super-population definition in

Särndal et al (1992) to define what it means for a finite population to be generated by a super-

population (Definition 3.1). In Section 4 we define the general product space (Definitions 4.1, 4.3)

and show how stochastic dependence is introduced in the product space (Example 4.1); we show

different forms the product space can take according to the model and wether the design is single

stage or multiple stage (Examples 4.2, 4.3). Example 4.4 shows how the work of Pfeffermann and

Sverchkov(1999) on estimation of regression models used with survey data, fits into the product

space methodology. We exploit the additional information on the design and the model by deriving

conditional probabilities which are used in later applications, and we study the interplay between

dependence and independence of random variables when viewed in the design space, the product

space and the model space. We show that we can “ignore” the design and work in the realm of the

super-population space, when the design is SRSWOR (Examples 4.5, 4.6). This was the approach

taken by Fuller(1975) to obtain asymptotic normality of the sample regression estimator around the

super-population parameter. We show that, counter-intuitively, we cannot ignore the design if it is

“simple random sample with replacement” (SRSWR) (Example 4.5).

In Section 5 we show that if the sample and super-population statistics converge in law in their

respective spaces, they also converge in law in the product space. The two terms in the right hand

side of (1.1) are not, in general, stochastically independent. We establish here their “asymptotic

independence” under mild conditions (Theorem 5.1).

Finally, in Section 6 we establish the asymptotic normality of a sample estimator derived from a

general estimating equation, under general conditions. We apply this to obtain the asymptotic

normality of the ratio estimator of the average stratum mean under a stratified one-stage p.p.s.-

design. We then give the type of conditions in the super-population that imply (design) asymptotic

normality of a general sample estimating equation estimator for a two-stage sampling design. In this

last example the product space is built with a model probability conditioned to “prior” information,

i.e., information known at the time of the design and used for designing the two-stage sample.
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2. Finite populations and sampling designs

Definition 2.1 A finite population of size consists of units, or labels, with the

associated data, i.e. each unit is associated to a unique real valued vector The

components represent the characteristics of interest, represent the auxiliary

information, and contains prior information available at the time of the design of the survey

on all units Here and are positive integers. We write

and In what follows “prior” information refers

to information about the population available at the time of the design of a survey.

Remark 2.1 In this paper, N will denote the size of the finite population (i.e. the number of ultimate

sampling units in the population) for one-stage-sampling schemes, and it will denote the number of

clusters or primary sampling units (p.s.u.’s) for multistage schemes, in which case the size of the

finite population will be denoted by M.

Definition 2.2 A sample is the realization of a probabilistic (randomized) selection or sampling

scheme (Särndal et al, 1992, p. 25 ). We adopt the comprehensive definition of a sample in Hájek

( 1981, p.42): it views the sample as “a finite sequence of units or labels of the finite population,

which are drawn one by one until the sampling is finished according to some stopping rule. This

sequence distinguishes the order of units, may be of variable length and may include one unit of the

finite population several times”. This definition includes both samples selected “without

replacement” (WOR), and “with replacement” (WR). We remark that under a WOR scheme, a

sample can be viewed as a subset of labels or units from the finite population U and we may use this

conceptual view of the sample when it is more convenient. Our framework accounts for both

definitions.

Remark 2.2 For a stratified two-stage design the collection of all possible samples S is completely

determined only if we know a priori all the strata and cluster sizes and their respective expected

sample sizes. If so, S is well defined, since every label in the finite population must have a positive
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probability of selection.

In the literature, a design p associated with a sampling scheme is a probability function on the set

of all possible samples under this scheme (see for example Särndal et al (1992)). The definition of

a sampling design given below is more restrictive than the one above in that it requires measurability

of p as a function of the variables containing the prior information.

Definition 2.3 Let U be the finite population of Definition 2.1. Given a sampling scheme, let S be

the set of all possible samples under the scheme. Let C(S) consist of all subsets of S. C(S) is defined

to provide a field for the probability space we are about to define. Let be a subset of

values of the prior information. A sampling design associated to a sampling scheme is a function

such that:

(I) p(s, · ) is Borel - measurable in ú , œ s0 S+
q×N

(ii) p(· , z , z , ... z ) is a probability measure on C(S) , œ (z ,...z ) 0 D(z )1 2 N 1 N
N

We say that (S, C(S) , p) is a design probability space.

In all applications we will either take q = 1, or do not consider prior information. Under a two stage

design with N primary sampling units (p.s.u.’s) we can carry on the design with prior information

on the N p.s.u.’s only. The definition of design can be extended to include prior information on all

sampling units.

The definition of a finite population parameter given below is more restrictive than that of Särndal

(1992), p. 39. The measurability condition imposed on the parameter and its estimator ensures that,

when the finite population is generated by a super-population, the finite population parameter and

the estimator can be viewed as real-valued measurable functions (random variables) defined on the

probability space associated with the super-population (see Definition 3.1).

Definition 2.4 Consider a finite population as in Definition 2.1. A real-valued, finite population

parameter θ is a Borel- measurable function defined on a subset D(y,x,z) d ú . An estimatorN
(p+k+q)×N
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of this finite population parameter associated with a design, also called sample estimator, is a

function : S × D(y, x, z) 6 ú, where the domain D(y, x, z) f ú , (s, @) is Borel -(p+k+q)×N

measurable. Note that (@ , y , x , z ) is C(S) - measurable since S is finite.N N N

Remark 2.3 A sample estimator can be a design-based estimator or a model-assisted estimator

depending on how the components of the auxiliary variables are used. For pertinent definitions see

for example Särndal et al (1992).

We next describe the design, sample estimator and properties shown by Krewski & Rao (1981) for

making inference from stratified samples, which we will use in later applications.

Example 2.1 Stratified two-stage probability proportional to size(PPSWR) (Krewski & Rao,

1981). Let be the number of p.s.u.’s in the finite population. For each stratum , and

are respectively the number of p.s.u.’s in the stratum and the number of ultimate units in p.s.u.

and Let . The prior information are the “sizes”

of the p.s.u.’s . Suppose p.s.u.’s are selected with replacement

in stratum with probabilities at each draw. The selection is

done independently in each stratum, and independent sub-samples are taken within those p.s.u.’s

selected more than once. The finite population mean is where is the

stratum weight, is the finite population stratum mean and is the total of p.s.u.

Let be an unbiased estimator of the total based on sampling at

the second stage. Then a sample estimator of the stratum mean is given by , where

and = 1 if p.s.u. is selected in the sample at the draw in stratum

and 0 otherwise, . Finally, a design-unbiased sample estimator of the mean is

b
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We often refer to conditions to (Krewski and Rao (1981), p. 1014) in the Appendix for the

asymptotic normality of the sample mean .

3. Super-populations

The following definition is similar to the definition of super-population given in Särndal et al (1992,

p. 533 ).

Definition 3.1 Consider a finite population U of size N as in Definition 2.1. A super-population

associated with it consists of a probability space (Ω, ö, P) and random vectors (Y , X , Z ),i i i

, such that for some ω 0 Ω,0

i = 1,...N . We write and define and similarly. We say that U is a realization

of, or is generated by the super-population. A family of distributions of ( ) that is given

a priori is called a super-population model. We note that different outcomesω can generate the finite

the same finite population.

Example 3.1 Two-stage super-population model. Let Ω be the conceptual population of people

like those living at present in a specific country. Suppose that we can conceive it as composed of

L disjoint strata of units hi, i = 1,..., N , h=1,...,L where unit hi represents a cluster of individuals.h

Let be the corresponding probability space. Now we assume that are random

variables on the probability space that represent the number of individuals that live in cluster hi. We

are interested in characteristics pertaining to the individuals labelled by , living in cluster

. In order to be able to define the super-population according to Definition

3.1, we must know an outcome of the , say for example, the size of the clusters of the population

existing right now. Let . In this case, we use this

prior information to define the super-population model by conditioning on the generated

by the event and we use the resulting conditional probability measure to do inference. The

conditional probability measure is defined by for F 0 ö, if

(see Chow & Teicher, 1977, Equation 3 p. 222). Now we define the super-population
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on by random vectors of p socio-economic characteristics associated with the

individual . The cluster totals

are assumed independent random vectors and identically

distributed within strata b

Example 3.2 Finite population with a response model. In this example, the super-population is

determined by the response model. Let be a finite population associated with data

(see Definition 2.1). Let the -product describe the collection of response

patterns of the responding units: with if unit responds and zero otherwise. Thus

. Suppose the response model for this population is given by

. We define the super-population by

For each the finite population generated by the outcome and the super-population,

consists of all labels and associated data . The finite populations and

will coincide only for the outcome representing complete response b

In what follows, the subscript “d” refers to design randomization and we will use “m” to indicate

probabilistic properties related to the space (Ω, ö, P). As a subscript, “m” will indicate convergence

in distribution induced by the model space. and denote, respectively, the model expectation

and model variance of a random vector.

We now illustrate how conditions that are sufficient for design - based inference in finite populations

can be justified as a consequence of simple moment conditions in the super-population, which, in

turn, can be justified by expert knowledge of the model. We give below an application related to the

work of Krewski & Rao (1981).

Consider the two-stage super-population model of Example 3.1. Here the cluster sizes are non-

stochastic in the super-population space. Define . We assume that the arrays

are nested as increases. The number of strata 6 4, as ν 6 4. We also assume, defined on the
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finite population generated by ω0 Ω, the sampling design of Example 2.1

where The finite population means are and the corresponding

sample estimators of Example 2.1 are . We show that moment conditions in the

super-population yield condition of Krewski & Rao for asymptotic normality of the sample mean

(in the law of the design). We omit indexing the populations.

Proposition 3.1 We assume that no strata is of disproportionate size (Condition ). Let

If in addition, we assume the model - based conditions:

(M ) as n 6 4, and ,1

then condition holds

(C ) a.s. ω,1

as n 6 4, where is the estimator of the stratum mean based on the i-th draw of stratum h,

, defined in Example 2.1. The proof is given in the Appendix b

4. The product space

In this section, we first define a measurable space (a product space) that includes the super-

population and the design and we define the product probability measure We then present the

conditional probabilities given the design and given the model (Propositions 4.1 and 4.2

respectively), which we require to show that we cannot ignore the design even for self-weighted

designs (Example 4.5), and to prove that convergence in design implies convergence in the product

space above mentioned (Theorem 5.1). We assume that the size of the finite population is not

dependent on the outcome of the super-population. Let be a design and let be a

probability design space defined on the finite population. Recall that once a sampling scheme is

determined, for the space of all possible samples to be well defined, it is necessary to know the

number of ultimate units of the population, as well as the number and size of strata, p.s.u.’s,

secondary sampling units (s.s.u)’s, etc.
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Definition 4.1 Consider a finite population of size generated by a super-population

as in Definition 3.1. We define the product space as a measurable space given by

with the σ-field .

Next, we show that a design and sample estimator can be viewed as random variables in the product

space and we define a probability measure on the product space (S × Ω , C (S) ×ö ).

Definition 4.2 Consider a super-population associated with a finite population as in Definition 4.1.

Let p : C (S) × ú 6 [0,1] be a design on the finite population as in Definition 2.3. Let us assume+
q×N

that the range of the Z is contained in the domain of the design, i.e., R(Z )f D(z ). Then the designN N N

can be viewed as a random variable p on (S × Ω ,C(S)×ö) defined byd , m

p (s, ω) = p(s, Z(ω)), ω 0 Ω, s0 S. (4.2)d,m

Definition 4.3 We define P as the σ-additive measure that on elementary rectangles of thed ,m

product σ - field, has the value

P ({s}× F ) r p (s, ω) d P, s 0 S , F 0 ö (4.3)d ,m d,m

P is well defined because all sets in C(S)×ö can be expressed as a finite union of elementaryd,m

rectangles. In particular, P (S × Ω)=1. Hence P is a probability measure on the product space.d , m d , m

Remark 4.1 If is a sample estimator on the design space (S, C(S), p) with associated super-

population (Y , X , Z ) and the range of the super-population is contained in the domain of , thenN N N

the sample estimator can be viewed as a random variable on the product space defined by:

(s, ω) = (s, Y (ω), X (ω), Z (ω)), ω 0 Ω , s 0 S. (4.4)N N N

Example 4.1 Stochastic dependence in the product space. Let and p denote, respectively,

the super-population and design of Definition 4.1, with composed of N independent (not

necessarily) identically distributed random variables and p a design associated with a SRSWOR or
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a SRSWR scheme of sample size n. Let denote the values of associated with

the units i in a sample s 0 S. We define the k-th draw-selection indicators { } by

if unit i is selected in the sample at the k-th draw and zero otherwise, for k=1,..., n. Then y can bes

written as the sequence of n units

.

Each coordinate of the sequence represents the result of a draw. If the design is WR then and

are d-stochastically independent for k…R and all i, j, whereas if the design is WOR the and

are design-stochastically dependent and if then for all R…k. Hence the y cans

be viewed as a vector of random variables in the product

space: If the random variables in are identically

distributed, under SRSWOR the are stochastically independent in the product space, whereas

under SRSWR the are stochastically dependent as variables in the product space. Now, if the

components of are not identically distributed, whether the design p is SRSWOR or SRSWR,

the are stochastically dependent random variables in the product space. See the Appendix for

the proof b

Example 4.2 Two-stage super-population model and two stage design. We assume the two-

stage super-population model of Example 3.1 defined on (Ω, ö, P ) and recall that we use as priorM

information the size of the clusters of a population existing right now to define the super-

population model. This minimum necessary information is contained

in where the are as in Example 3.1. We select

the sample with probability proportional to those sizes, but we want to make conclusions about a

more general population than the finite population living in those clusters now. We set

. Once the model is defined, we first define a sample space S, as the collection of

all possible “stratified clustered” sequences of units (see Section 2) of a finite population associated
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with the super-population model. We then define a stratified two-stage sampling design

with L strata, N clusters and M ultimate units. We can then construct the product

space S × Ω with probability measure defined on the elementary rectangles by

, for s 0 S and F 0 ö b

Example 4.3 Product space for inference on a finite population parameter in the presence of

non-response. Let U(ω) be a finite population generated by the super-population of Example 3.2.

The mean under complete response is the parameter of interest. Without some model

assumptions, there is no unbiased or consistent estimator of . However, if sampling and response

mechanisms are considered independent of each other and is design-

unbiased for , then is unbiased for in the law of

the product space. Here is the probability of selecting unit b

Example 4.4 Parametric distribution of the sample data (Pfeffermann & Sverchkov, 1999)Let

us assume that the selection probabilities depend on the cluster sizes, which can be correlated with

(See Definition 3.1) and the auxiliary information , and that we have the two-stage super-

population model of Example 3.1, and the product space defined in Example 4.2. The “parametric

distribution of the sample data” proposed by Pfeffermann & Sverchkov (1999), which they use to

do inference, can be thought of as the conditional probability measure given a sample and the

auxiliary data, i.e., where the field is generated by the event {s }× F , with s 0 S and0 x 0

. Hence the “parametric distribution of the sample data” would given

by

,

where F 0 ö , if s = s , ω0F 1F and P(F 1F ) > 0 b0 x M x M

Proposition 4.1 We denote by P the conditional probability on the product space given the fieldm*d

C(S) × Ω. On each set B 0 C(S)× Ω, {s}× F , A 0 C(S) , F 0 ö, we have:s s



Pm*d(B , s0) ' Pd,m(s0 × Fs0
)'Pd,m(s0 × Ω)

Pm*d(B , s0) ' P(Fs0
)IA(s0), IA(s0) s0

6 s×Ω : s 0 S>

IA(s0).

Pm*d( @ , s0)

Pm*d( @ , s0) 'Pd,m( @ *s0× Ω)(s0)

Pm****d

Pm*d Wk

Yi, i'1,..., N.

Yi, i'1,..., N. Pm*d Wk

Yi, i'1,..., N,

Yνi

Nν , ν$1 σ2 …0

nν sν

(Sν×Ω, C(Sν)×ö, Pν) Pν'Pm*d(@ , sν)
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(4.5)

if s is contained in A, and 0 otherwise. If, in particular, p(s,ω) does not depend on ω, then0

where is the value of the indicator function of the set A at .

The proof is immediate from the definitions since the conditioning field is the field generated by the

partition of the product space into the finite number of sets (see Chow and Teicher

(1997) Example 1, Section 7.2) (

Remark 4.2 Note that Proposition 4.1 does not imply that if p(s,ω) does not depend on ω we can

ignore the design, since information about the selection indicators is contained in the factor

Example 4.5 below illustrates this point. We also note that the probability measure

coincides with the conditional product probability measure given only one sample s × Ω, when0

evaluated at s : (see Chow & Teicher, 1997, equation 12, p 2150

and Definition, p.223) . Hence the Example 4.5 is valid for both the conditional probability given

the entire design and the conditional probability given only one sample s .0

Example 4.5 Stochastic independence of the sample under . In the context of Example 4.1,

with SRSWOR, under , the - variables inherit the independence of the original

A WOR design implies that there are no repetitions in the sample, so the sample is

a subset of the On the other hand, for SRSWR, under , the variables do not

retain the independence of the if the selected sample has repeated labels. For

illustration of the mechanism, see the Appendix b

Example 4.6 Asymptotic normality in the projected space. Consider a sequence of super-

populations associated with finite populations as in Definition 3.1. We assume that , i = 1,

... are i.i.d. random variables’s on (Ω, ö, P) with 0 mean and finite second moment .

The design is SRSWOR of size , ν = 1,.... . Given a selected sample , the space

, , is the “projected” probability space onto the model . Let us



Wνk(sν,ω) Yνi

(σ2nν)
&1/2[ '

nν

k'1
Wνk] Pν

Wνk(sν,ω) Yνi, i'i(k)

(σ2nν)
&1/2[ '

i0sν

Yνi]

S×ö

Pd,m (Ω, ö, P)

S×ö

S×öN öN'σ(Y N, X N, Z N)

B' ^
s 0A

0 C(S)×ö

j
s0A

pd,m(s,ω)IFs
(ω )

ö öN'σ(Y N, X N, Z N)

σ(Z N) ω00Ω, z N'Z N(ω0),

Pd*m A0C(S)

Fzr 6ω0Ω: Z N(ω) ' z N>, p(A, z N)'Pd*m(A×Fz, ω0).

(Yhi , Zhi ) Yhi1, Yhi2, Zhi

i h, i'1,...,Nh, h'1,...,L.

z'(zhi)

Yhi
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denote by the array of random variables obtained from the original and the sample

defined as in Example 4.1. Then converges in the law of to a standard normal

random variable. Since each is equal to one , we could write that

is asymptotically normal N(0,1). See the Appendix for the proof b

We define now the conditional probability given the σ-field . It represents the change in

when we have the additional information given by the complete model space . Note

that the information contained in is richer than the information contained in the (super-

population) model given by , where is the σ-field generated by the

super-population.

Proposition 4.2 Let {s}× F with all s distinct. We define the set function :s

P (B, ω) = , ω 0 Ω. (4.6)d | m

Then P (B, ω) is the ( regular) conditional probability measure on (S × Ω , C (S) × ö) given thed | m

σ - field S × ö . The proof is given in the Appendix (

Remark 4.3 Proposition 4.2 is also valid if we replace everywhere by or

by . We note that given an outcome the design probability can be

“recovered” as a version of in the following sense: for and

we have

Consider now a one-stage super-population model composed of L disjoint strata of N vectorsh

for each h =1,..., L. Say, for example, the are respectively the labour cost

, workforce size and annual revenue of business in stratum Suppose the

revenue values correspond to an outcome ω0Ω that has occurred. Since the elements in

are somewhat correlated with the revenue, we may select the sample with probability

proportional to those revenues, and as in Example 4.2 we might want to learn about businesses in



Fz '6ω0Ω: Zhi(ω) ' zhi, i'1,..., Nh, h'1,..., L>
S×Fz

Pd,m( @ *õ)

Pd,m( @ *õ)

S×Fz Fz

Pd,m(@*õ)(s0, ω0) Pd,m(B) P(Fz)'0 P(Fz)>0 Pd,m(@*õ)(s0,ω0)' '
s0A

pd,m(s, z)P(Fs|Fz).

õ

(S×Ω, C(S)×ö, Pd,m)

θ̂ 0 úR θ̂

F(t,ω) r p(6 s0S: θ̂(s,ω)#t >, ω), t 0 úR.

F(t,ω)

F(t,ω) ' Pd |m(B, ω),

B'6(s,ω): θ̂(s,ω)# t >, t 0 úR .
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a dynamic population rather than the collection of existing businesses having that revenue now. In

this case, we can build the product space before we condition on the revenue outcome, then we may

use that outcome, the “prior” information,

by conditioning on the field õ generated by the event and we may use the conditional

probability measure to do inference.

Proposition 4.3. Conditioning on the prior information. is a regular conditional

probability measure and it is constant on : for B as in Proposition 4.2 and ω 0 ,0

= if and if ,

This follows from the fact that is generated by a partition of S × Ω and Example 1, section 7.2,

Chow and Teicher (1997).

5. Convergence in the Product Space and Asymptotic Independence

In this Section we establish results that enable us to determine the limiting distribution of a

combination of sample estimators and super-population statistics. We show that convergence in the

law of the super-population or in the design law implies convergence in the law of the product space

and that under certain conditions the two statistics are “asymptotically independent”.

Remark 5.1 Let be the product space of Definitions 4.1 and 4.3 and

an estimator defined on the corresponding design-space. The design-distribution of is

the ö -measurable random variable :N

With ö = σ (Y ,X , Z ) in Proposition 4.2, we note that coincides with a version ofN
N N N

the conditional probability given in formula (4.6): where

Hence by definition (see Chow and Teicher (1997), p.225)



F(t,ω), t0úR, θ̂

ν$1. λν, λ 0 úR (Ω,ö,P)

λν 6 λ λν 6 λ

Fν(t, ω) 6 F(t, ω) t 0 úR F(t, ω),

F(t, ω)

θ̂ν Fθ(t) ' IΩ F(t, ω) dP(ω). θ̂ν

λν 6 λ Fν(t, ω) 6 Fθ(t)

t 0 úR Fθ(t) Fθ(t)

(θ̂ν, λν)

θ̂ν λν

θ̂N 0úR θ00úR

(Ω,ö,P )
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is a version of the conditional distribution of given S × ö .N

Theorem 5.1 We consider a sequence of the product spaces and sample estimators as in Remark

5.1 indexed by Let be random vectors defined on . We have: (i)

If in the law of the model (P), then in the law of the product space.

(ii) If in probability P, for all points of continuity of then

is a bounded random variable in the model space, and the product-space distribution of

converges to In particular, if is design-consistent a.s. ω 0

Ω, then it is consistent in the product space.

(iii) If in the law of the model (P) and in probability P as ν 6 4, for all

points of continuity of where is a non-stochastic distribution function,

then the joint distribution function of converges to the product of the two limiting

distributions. The random variables and are said to be asymptotically independent. Note

that when the limiting design-based distribution is normal with mean zero, we only require that the

limiting variance be non-stochastic in the model. This last condition would follow from simple

conditions in the super-population model. The proof is given in the Appendix bbbb

6. Sample estimators derived from an Estimating Equation (EE)

In this section we describe a methodology to derive the asymptotic normality of the sample

estimating equation estimator when referred to a super-population parameter . As for

example 5.1, it consists of combining existing asymptotic results in both the design and super-

population probability spaces, under the umbrella of the product space, and the application of

Theorem 5.1.

We first define an estimating equation estimator for the super-population set up. Let and
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represent a super-population as in Definition 3.1. In what follows denotes the

number of stochastically independent vectors in the super-population. Given a design , the sample

size (or first-stage sample size) denotes the number of stochastically independent units in the

sample. Let g represent continuous functions defined on We consider functions of the form

(6.1)

where . A finite population EE is defined by

. (6.2)

Definition 6.1 An (finite population) EE estimator is defined as a solution of the finite

population estimating equation: . For fixed, is a finite population

parameter.

Yuan and Jennrich (1997) set very general conditions that lead to the existence, strong consistency

and asymptotic normality of estimating equation estimators. The super-population models used by

Yuan and Jennrich require independent but not necessarily identically distributed random vectors

. We could also apply their results to clustered data models where we can add up the

vectors within a cluster (i.e. , the cluster totals are stochastically

independent, and the cluster sizes stay bounded as the number of clusters increase towards

infinite.

Now let be a design probability space where the (fixed) first stage expected sample

size is . Let be a design-consistent estimator of . A sample EE is defined

by

. (6.3)

Definition 6.2 A sample EE estimator is defined as a solution of the sample EE in (6.3).

Theorem 6.1 shows that the sample EE estimator ( around the model parameter) is asymptotically

normal in the law of the product space. Conditions (1) to (3) are the conditions given by Yuan and

Jennrich (1998) for the existence, consistency of and asymptotic normality of

.
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We will see that conditions (1), (4) and (5) below imply the existence, design-consistency of and

design-asymptotic normality of .

Theorem 6.1 Let and denote a sequence of super-population composed

by independent random vectors and let be a sequence of design spaces defined

on finite populations generated by the corresponding super-populations defined above. Let

as , and let be the first stage fixed sample size (or expected value of the first stage

sample size). Note that , , and depend on the index , but we omit it in what follows

for the sake of simplicity. Let as . Note that we do not require that f=0. We

assume the following conditions:

1. with probability one.

2. There is a compact neighbourhood of on which, with probability one, all

are continuously differentiable and the Jacobians converge uniformly to a non-

stochastic limit which is non-singular at .

3. in the law of the super-population.

4. There is a compact neighbourhood of on which , which are assumed

continuous, converge uniformly in design probability to a non-stochastic (in design) limit

which coincides with at for almost every ω0Ω. Note that if the is linear in

the and all the are continuously differentiable then all the are too.

5. in the law of the design as for almost every ω0Ω, where the

variance matrix is non-stochastic in the super-population.

Then

(6.4)

in the law of the product space , where for ,

. (6.5)

Proof: For simplicity we assume that

(6.6)

Condition 1 to 3 imply the asymptotic normality of the second term on the right hand side of (6.6),

in the law of the model (see Yuan and Jennrich (1998)). This and Theorem 5.1 (i) , in turn imply

convergence in the law of the product space. Next we observe that exists and in

design probability, as for almost everyω0Ω. Indeed, the are continuously differentiable
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and design consistency implies that converges to (the limit of in Yuan &

Jennrich) in design probability. Hence we can apply to the same techniques of Theorems

1 and 2 of Yuan and Jennrich (1998), and thus conditions 1 and 4 imply both the existence of

and in design probability. Since the above mentioned Theorems 1 and 2 imply also ,

almost surely in the model probability P, we have in design probability a.s.

Now , following the reasoning of Yuan and Jennrich (1998), conditions 4 and 5 imply asymptotic

normality of the first term in the right hand side of (6.6) (see also Binder (1983)). This in turn

implies convergence in the product space, by Theorem 5.1 (ii) However these two terms above are

not stochastically independent in general. Theorem 5.1 (iii) and condition 5 imply the “asymptotic

independence” of the terms and the asymptotic normality of the sum b

Example 6.1 The ratio estimator of the finite population mean. We assume a nested one-stage

super-population model composed of disjoint strata of

and

Let be the parameter of interest, and

The finite population EE and finite population EE estimator are respectively,

Under a stratified one-stage p.p.s.-design, units in sample are selected with probabilities

with replacement, . The sample EE, with is given by

and the corresponding sample EE is the ratio estimator,

Let and We assume if and only if . We aim to obtain the

asymptotic normality of as . Here we construct a product space with the

unconditional model probability measure of Example 4.2. We decompose

into the two terms in the right hand side of (1.1), and investigate the conditions

necessary for asymptotic normality and stochastic independence of the two terms. In the simple case

of the ratio estimator of the mean, existence of both the finite population and sample EE estimators
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follows from the exact solutions of the EE. Their consistence follows from Assumption 1 and the

fact that Assumptions 2 and 4 hold for the entire parameter space. We only require to verify

Assumptions 1, 3 and 5 of Theorem 6.1.

a.s. follows from the Strong Law of Large Numbers (SLLN) for which

holds if (Theorem 22.4, Billingsley,

1995).

The CLT for follows from Liapunov’s condition

(Theorem 27.3, Billingsley, 1995) and the existence of :

The CLT for

follows from assuming conditions , below, conditions in the Appendix applied to the

residuals (see Yung, W. and Rao, J.N.K., 2000) and that be constant a.s.:

.

b

Example 6.2 General EE estimator under a stratified two-stage super-population model and

design. Binder (1983) established sufficient conditions for the asymptotic normality of the sample

EE estimator in the design probability space (Assumption 5 of Theorem 6.1). These conditions

are very general and some depend on the particular design in consideration. We examine here the

design conditions for the asymptotic normality of to hold in the finite population, and

the sufficient assumptions in the super-population that imply these design conditions, when the

product space is that of Example 4.2. We assume the stratified two stage super-population model of

Example 3.1 with the addition of the auxiliary information given by (h, i, and j as in Example

3.1). Thus the finite population estimating equation is given by

where Let us consider the stratified
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probability proportional to size design of Example 2.1 and of Krewski and Rao (1981). In addition,

we assume condition in the Appendix. Let be the sample estimator of described in

Example 2.1 and assume that conditions 1 and 2 of Theorem 6.1 hold. Since , we have

(6.7)

and hence we can express (6.7) as the sum of n = n + ... + n independent random vectors1 L

with mean zero:

with , where denotes the

second stage unbiased sample estimator of .

Let and let , which is assumed to exist.

We assume conditions C to C hold for the vector sample mean . This implies that1 4

Liapunov’s condition for the CLT for arrays is satisfied (see Theorem 27.3 for scalars, Billingsley,

1995 and apply it to for every ). Thus

in the law of the design.

Now, Proposition 3.1 gives conditions in the super-population for condition C to hold. Recall that1

for proposition 3.1 to hold, we assume that the super-population is nested as N64. Note that C3

translates directly to the super-population space, given that in the cluster sizes are non-

stochastic. Condition C about the limiting variance and Theorem 5.1's condition that it be a non-4

stochastic positive definite matrix, require as n 6 4 and conditions

in the super-population that are more complex than those stated in Proposition 3.1, but they can be

derived in the same way . We do not spell them out here b

APPENDIX

Krewski-Rao (1981) designs conditions for the asymptotic normality of the sample mean.

as in Example 2.1.

where are the 2 stage sample sizes and are thend
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sampling weights.

, which implies that no strata is of disproportionate size. Here

is the number of ultimate units in stratum h.

as in Example 2.1.

Proof of Proposition 3.1

Let (ω) = . We have to show that (ω) stays bounded as n64, for the

ω generating the finite population. If then

(A.I)

(see Chow and Teicher, 1997, p.107). We have, setting N=2 and p=2+δ above,

(ω) # (A.II)

Now, is as in Example 2.1, thus only one term of is non-zero; hence for any i=1,..., nh

# (A.III)

since M $ 1 and M $ N , k=1,..., N , h=1,...,L. Similarly, by (A.I) with N=N ,hk h h h h

(A.IV)

Hence (A.III) and (A.IV) yield

(ω) = O(1)@ (A.V)

Now, (A.V) and the Strong Law of Large Numbers (SLLN)for nested arrays imply that (ω)= O(1)
a.s. ω (see for example, Theorem 1.14 Shao, 1999)b

Proof of Example 4.1

Consider and since is

constant over the product space for SRS designs, we have Thus

under both SRSWOR and SRSWR we have Under
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SRSWOR, .

Under SRSWR,

Hence, for k…R, , except for the WOR

case when the random variables are identically distributed bbbb

Proof of Example 4.5
We use the notation of Example 4.1. For s 0S and k…R, under SRS, we have by Proposition 4.1 :0

and

. (A.VI)

Under SRSWOR, for every s 0S, , and hence these terms disappear in the0

double sum above. Since the Y components are stochastically m-independent, we obtainN

Under SRSWR however, there are samples s 0S for which for some s, hence the0

double sum above contains non-zero terms where . For samples with repeated labels, we have:

.

Which means that we cannot always attain the equality we obtain for the WOR sample and in those

cases the projected W (s ,ω) are model dependent random variables (k 0

Proof of Example 4.6
For simplicity we omit writing the index ν. The are stochastically independent by Example 4.5.

Moreover, they are identically distributed random variables with mean zero and variance , since

their distribution is given by (A.VI), given , the is equal to one for only one i=1,..., N, and

the are identically distributed. We apply Theorem 27.2 pp. 359-360 , Billingsley

(1995) to this array of i.i.d. r.v., after noting that Lindeberg condition is satisfied for such arrays

because the i.i.d. r.v.’s are uniformly integrable (see (27.9) of
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Billingsley,1995) (

Proof of Proposition 4.2 First we prove (i) : for each ω 0 Ω , P (@ , ω) is a probability measured | m

on the product space. Next we show (ii) : for each measurable set B in the product space,

P (B, @ ) is a version of the conditional probability of B given S × , i.e. it is S × -measurabled | m

and we have:

P (B, ω) d P = P (B 1 S×F ) , for any F 0 (A.VII)d | m d, m d , m

To prove (i), we need to show σ - additivity. From equation (4.6), the σ - additivity follows from

the finite additivity of p and the σ - additivity of the indicator functions ford,m

disjoint ). To prove (ii), we note first that P (B, @ ) is S ×ö - measurable, since isd | m

ö - measurable. Next, it suffices to prove (A.VII) on the elementary rectangles B = {s }× F . By0 0

definition of P (equation (4.6)), the left hand side of (A.VII) is equal to :d | m

where the equality above holds because over a collection of samples AdS,

Definition 4.3 and the fact that the design is a probability measure for each ω, imply that the sum

above equals:

(

Proof of Theorem5.1
(i) from Definition 4.3 and the fact that for all , hence

(i) follows.

(ii) converges in probability to , at points of continuity t, so by Remark 5.1 we can

write in probability (P), where By (i)

it converges in the law of the product space Since the bounded.

convergence theorem (see Theorem 3 of Chow and Teicher p. 99) implies:

as ν v 4 . (A.VIII)

On the other hand,
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by Proposition 4.2. This last equality and (A.VIII) imply (ii).

(iii)Let be the indicator function of the measurable set Using

Proposition 4.2 and the definition of we express the distribution function of as:

Now, and by letting

denote the distribution function of , we have for :

All functions above are bounded by one, so the first term of the right-hand side converges to zero

by the bounded convergence theorem since by hypothesis converges to zero

in probability P at points of continuity of (see also Remark 5.1). The second term of the

right-hand side also converges to zero, since by hypothesis, at points of continuity of

b
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