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Abstract

In this paper, we investigate several sample path properties on the increments of (N, d)-Gaussian
random fields and also we obtain the law of iterated logarithm for the Gaussian random field, via
estimating upper and lower bounds of large deviation probabilities on suprema of the (N, d)—

Gaussian random fields.

2000 Mathematics Subject Classification: 60F15, 60G15.
Keywords: Gaussian random field, quasi-increasing, regularly varying function, large deviation
probability.

1. Introduction and results

The limit theory on the increments of Wiener processes, partial sum processes,
empirical processes and etc. is initially integrated in Csorgé and Révész (1981).

Since then, many various limit theories for fractional Brownian motions, renewal
processes, Gaussian processes and related stochastic processes have been developed
in Csaki et al. (1991), Choi (1991), Csorg6 and Shao ((1993), (1994)), Kono (1996),
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Zhang ((1996), (1997)), Steinebach ((1983), (1998)), Choi and Kéno (1999), Lin and
Choi ((1999), (2001)) and etc.

In this paper, we investigate several sample path properties on the increments
of (N, d)-Gaussian random fields under mild conditions and also we prove the law
of iterated logarithm for the Gaussian random field. Throughout the paper, we al-
ways assume the following conditions: Let {X;(t),t € [0,00)™}, § = 1,2,--- ,d,

be real-valued continuous and centered Gaussian processes with X;(0) = 0 and
E{X;(t) — Xj(s)}2 = o7([lt — sl|), where o;(h) are positive continuous functions
of h >0 and || - || is the usual Euclidean norm. Put

o(d,h) = max o;(h)
and assume that, for some a > 0, o(d, h)/h* is quasi-increasing, that is, there is a
constant ¢ > 0 such that o(d,s)/s* < co(d,t)/t* for 0 < s < t < 0.
Let {X4(t) = (Xy(t), -+, Xq(t)), t € [0,00)"} be a d-dimensional Gaussian

process with norm ||-|| and N parameters t1,--- ,tny € [0,00), where t = (t1,--- ,tn).
We call the process {X%(t), t € [0,00)Y} an (N, d)-Gaussian random field. The
realizations of random fields {X;(t), t € [0,00)V} for j = 1,2,--- ,d, are assumed
to be different objects. Moreover, the choice of coordinates of the parameter t =
(t1,--- ,tn) is not necessarily limited to length and time but any scale of measurement
might be involved.

Now, we introduce some notations to be used in this paper. Let t = (t1,--- ,tn)
and s = (s1,---,sy) be vectors in [0,00)". Denote:

0=(0,---,0) and 1=(1,---,1) in [0,00)",

t<s if t; <s; for all integers 1 <17 < N,

t+s=(t1 £s1, - ,ty £sn), ts=(t151, - ,INSN),
at = (aty,--- ,aty) for a € (—o0,0),

a(T) = (ar(T),--- ,an(T)), b(T) = (br(T),---,bn(T)),

(™) = {2(N1og([BD)]/la()]) +loglog b))} .
{ N1og([B(D)]/[a(T)]) + logg 10z [B(D)1) }

2N log([b(T)/a(T)])} .

where a;(T") and b;(T), i ,d, are positive functions of 7' > 0, logz =
In(max{z,1}) and 1 < 6 < e. Here, v2(T) will give sharper liminf results than
the case of 1 (7T') when we state Theorem 1.4 below.
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The following results generalize some main theorems on the increments of one di-
mensional Gaussian processes with one parameter in Choi (1991), Csaki et al.(1991),
Csorgd and Révész ((1978), (1981)), Ortega (1984) and Zhang ((1996), (1997)).

The main results are as follows:

Theorem 1.1. Assume that

O
O e TR T - .

Then we have
[ XUt +5) — XUt)|

limsup  sup sup <1 a.s. (1.1)
T—oo [t)<b(T) [sI<la)) o(d; [a(T)][)71(T)

Remark 1.1. We take || - || under sup in (1.1) and hereafter, because we have
{(t,;s): t <b(T), s <a(T))} C {(t,s) : [[t] < (D), [Is]l < [la(T)]}-

The condition (i) implies that a(7) and b(7) may be many diverse functions.
However, in order to obtain the opposite inequality of (1.1), the conditions on a(T),
b(T') and o(d, ) are a little bit restricted as in the following Theorem 1.2.

A positive function o(h), h > 0, is said to be regularly varying with exponent
a>0atb>0if lim,_,{o(zh)/o(h)} = 2%, = > 0.

The following theorem is a new version for obtaining the law of iterated logarithm
for (N, d)-Gaussian random fields in depending situations.

Theorem 1.2. For eachi=1,2,--- N, let a;(T) and b;(T) be nondecreasing con-
tinuous functions such that limp_ o [|b(T)|| = co. Further, assume that b;(T)/a;(T)
are increasing or a;(T) = b;(T) for each i = 1,2,--- ,N. Suppose that o(d,h) is a
reqularly varying function with exponent o (0 < o < 1) at oo and that there exist
positive constants c¢1 and co such that, for h > 0,

. do?(d, h) < a?(d, h) p d*c?(d, h) a%(d, h)
(i) ’ dh ’ =aTy ‘ dh? ‘ 22
Then we have
: | X(b(T) +a(T)) — X(b(T))]
T 7 N PTG o) R 12)

The class of variance functions o2 satisfying (ii) contains all concave functions with
0<a<1/2 (e.g. o%(d,h) =+h) and convex functions with 1/2 < a < 1. We recall
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that the correlation function on increments of a stochastic process with stationary
increments is nonpositive if and only if its variance function is nearly concave (cf. see

(2.10) of this paper, (3.10) and (4.2) in Cséki et al.(1991) and (2.7) in Lin and Qin
(1998)), and vice versa.

From Theorems 1.1 and 1.2, we obtain the following lim sup result:

Corollary 1.1.  If conditions of Theorem 1.2 are satisfied, then

limsup  sup sup [ Xt +5) — Xt =1 a.s

T—oo [6]<b()] [sI<lam) o (d; [|a(T)[[)y:(T)
X4b(T T)) — X4 b(T

lim sup | X%(b(T) +a(T)) (b)) _

T—oo o(d, [a(T)[)n(T)

1 a.s.

If, furthermore, ||a(T")|| = ||b(T")|| in Corollary 1.1, then it follows from Theorem
1.1 and Lemma 2.4 of this paper that we have the law of iterated logarithm for (N, d)-
Gaussian random fields:

Corollary 1.2. (The law of iterated logarithm) Assume that b;(T), i =1,--- N,
are nondecreasing continuous functions such that limyp_. ||b(T)|| = co. Suppose that
o(d,h) is a reqularly varying function with exponent o (0 < o < 1) at co. Then we
have

| X9t +5) — XU(t)]

limsup  sup sup =1 a.s.,
T—oo [tI<Ib(D)] [IsI<Ib)] o(d,|[[b(T)]]) \/2loglog [b(T)]

lim sup | X(b(T))]| 1 as
T—oo o(d,|b(T)|)) v/2loglog|b(T)|

From now on, we will show that liminf results differ from their corresponding
limsup results under the following condition (iii):

Theorem 1.3.  Suppose that, as T — o0,

log ([[b(T)[I/la(T)I) .,
logg |log [|b(T)]] -

(iii) ||b(T)|| — oo (or 0)

Then we have

X%t — X9t N 1/2
liminf  sup sup 1 X°(t +5) @)l < ( ! ) a.s
T—oo |1t <b(m)| Is<llar)| o (d; [|a(T)[)72(T)



(N, d)-Gaussian random fields 5

Theorem 1.4. Assume that o(d,h) is a reqularly varying function with exponent
a (0 <a<1)at0 oroco and that conditions (ii) and (iii) are satisfied. Then we have

||Xd(t+a(T))—Xd(t)||>< Nr )1/2 -
1+ Nr

liminf  sup

T—oo gi<b(ry)  olds [a(T)[)(T)  — (1.4)

The condition (iii) guarantees that the class of vector functions a(7") and b(T)
contains many various functions (cf. Book and Shore (1978)). Moreover, we assert
that the condition (iii) and ~2(7") are essential to show the difference between limsup
and liminf results in other stochastic random fields as well as in this paper.

Combining Theorems 1.3 and 1.4 yields the following liminf result, which is dis-
tinguished from Corollary 1.1:

Corollary 1.3. Under the assumptions of Theorem 1.4, we have
L | X9t +5) — X¢)|
liminf  sup sup
T=oo g)<|ip)| fsi<la) o(d: [[a(T)[)72(T)

x4 T)) — X4
= liminf  sup | X(t + a(T)) (t)]]
T—= gi<p))  o(d, [a(T)[)y2(T)

_( Nr >1/2
~ \1+Nr a5

and, equivalently,

liminf  sup sup [ X%t +s) — XUt)||
T—oo g)<b(m)| IsI<llam) o (d, [[a(T)[[)y1(T)
Xt 7)) — X%t
= lim inf sup ” ( +a( )) ( )H
T—oo g i<bmy) o, [|a(T)|)y(T)

- ( Nr >1/2
~ \Nr+1logb a5

Notice that, if 7 — oo in (iii), then Theorem 1.1 and Corollary 1.3 imply that we
have the limit result:

d _ yd
lim  sup | Xt +a(T)) — Xt)|
T—oo i< b)) o(d, [a(T)])7(T)
~ lim  sup sup [ XUt +s) — XUt)|| (1.5)
T—oo 14 <|ib(m)|| [sli<acm))  o(ds [a(T) ) (T)
=1 a.s.
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under the conditions of Theorem 1.4. For one-parameter Wiener process with o (1, h)
— V/h, the similar results as (1.5) can be found in Csérgé and Révész (1981).

The above results can be applied to develop the limit theories on increments of
finite dimensional multiparameter random fields with respect to the following stochas-
tic processes: Ornstein-Uhlenbeck process (e.g. Cséki et al.(1991)), renewal process
(Steinebach (1998)), lag sum process (Choi and Hwang (2000)), local-time process
(Csorgé et al.(1995)), partial sum process (Szyszkowicz (1993), Steinebach (1983),
Deheuvels and Steinebach (1987), Csorgd et al.(1999)), self-normalized partial sum
process (Shao (1998), Csorgé et al.(2003)) and etc.

Example 1.1. Let {Xj(t), t € [O.OO)N}, j=1,2,---,d, be N-parameter frac-
tional Brownian motions of orders a; with 0 < «a; < 1, that is, let {Xj (t), t €
[0.00)N}, j =1,2,---,d, be Gaussian random fields with X;(0) = 0 and o;(h) =
h*i, h > 0. When o; = 1/2, then {X;(t), t € [0.00)" } are standard Wiener random
fields. For convenience, put

b(T) = (", V2T, ,VNeT), a(T) = b(T)(log|[b(T)[|) " (loglog T) ",

where e < T' < co. Then o,(h), a(T') and b(T') satisfy all conditions of Corollaries
1.1 and 1.3 with

Ib(T)|| = VNN +1)/2 €T =:bye”, 3 (T) ~ {2(N + 1) log T}
for sufficiently large T'. Thus we have, by Corollary 1.1,
| Xt +5) — X(t)]

limsup sup sup
T—oo [t <bne [sl|I<[a(T)] o(T)
d _ yd
i IX(B() + (1) — Xb(D))]
T—o0 5(T)

= 2N+ 1)} as,

where §(T) = {eT T~ 1(loglogT)~'}*/logT, o« = max;<;j<q; and, by Corollary
1.3,

| X9t +5) — X(t)]]

liminf sup sup
T—oo ¢ <byeT |s|<[la(T)]] o(T)
d - d
~liminf  sup | Xt +a(T)) — X4t
T—=00 |t||<byeT o(T)

= bNa{—zNT(N il 1) }1/2 a.s.

Nr +logb
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2. Proofs

To prove Theorem 1.1, we need the following lemma (cf. Lin and Choi(2001)):

Lemma 2.1. For any € > 0 there exists a positive constant C' depending only on

e such that
Xt — X%t
P{ sup sup | Xt +s) (t)] za:}
ItI<IbD)| lIsI<la(T)l| o(d, ||la(T)])

N
SC(II'O( )II) o, 2z )
la(T)l 2+e¢
for all x > 1, where ®4(z) = P{|N¢(0,1)|| > =} and N%(0,1) is a d-dimensional
standardized normal random vector.

It is well-known that
dy(z) < cxd_2e_m2/2, x>1

for some ¢ > 0 (cf. Lemma 1 in Kéno (1996)).

Proof of Theorem 1.1. Let § =1 + ¢ for any given € > 0. Define
E, ={T:0" <o(d,||a(T)|) < 0}, —oo <k < o0,

[LICD] .
j=1{T:2 < <7 T e Ey}, 0<j<oo,
lla(D)]|

laz, ; | = sup{lla(T)|| - T € Ej. 5},
bz, ;|| = sup{[[b(T)[| : T" € Ex 5}

By the condition (i), we have

limsup  sup sup [ Xt +5) - X0
T—oo [t)<Ib(T) [sl<lacm)) ©(d; [|a(T)|)y1(T)

< lmsup sup sup  sup sup | X4t +s) — Xt @2.1)
" Jkl+—oo 52120 TEE ; e <IIb(D) s <la@) o (d; [|a(T)]]) 7 (T) '

Xt — X%t
< limsup sup  sup sup X :S) - ( )H,
kl-+1—00 521 161 < (b, Il sI<llary I 0% D(k. j)




8 Y.K. Choi
where D(k, ) = {2(log 2V7 + log log 01¥1+71°20 2) /% We will show that

Xt +5) — XI(t)]

limsup sup  sup sup - :
|k|-+H—00 =1 ||6]|<|[br, || lIsl|<llaz, , | 0% D(k, j)
Xt +s) — XUt 2.9
<6 limsup sup  sup sup | Xt +5) ( )H (2.2)
[kl +i—o00 j>1 [t <[br, Il sl <llar, , | o(d:[laz,;[|) D(k, )
< 62 a.s.

By Lemma 2.1, there exists C. > 0, depending only on ¢ > 0, such that

X4t — XUt
P{ sup  sup sup [ X%t +5) ( )H > 0}
=L elI<lbr, Il Isl<llar, 1 (d; [laz ;) Dk, 5)

br, [\ 21 ‘ ‘
< Ca Z (H Tk, j “) exp ( _ ﬂ(]og 2NJ + log logg\kH-J log, 2))
jZl HaTk,gH 2 +5

(2.3)
<C. Y 2 Nigv e

Jzl

S CE |k \/ 1|—1—E/ 2—5/1\”

for |k| + I large enough, where ¢’ = ¢/(2+¢) and k V1 = max{k, 1}. Hence we have

i i P{ sup sup sup ”Xd(t ) - Xd(t)” > 0} < 0
oo Laztlel<ibr lsl<la, ;1 o(d: llaz, ;D D(k, )

and (2.2) follows from the Borel-Cantelli lemma. Combining (2.2) with (2.1) yields
(1.1) by the arbitrariness of 6. O

The following Lemmas 2.2-2.5 are essential for the proof of Thoerem 1.2, and
Lemma 2.2 is a well-known version of the second Borel-Cantelli lemma:

Lemma 2.2. Let {Ag, k > 1} be a sequence of events. If
(a) D P(Ay) = oo,
k=1

(0) tmine Y P04 Z DU

n 2
1<j<k<n (Zj:l P(Aj )
then P(A,, i.0.) =1.

<0

)
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Lemma 2.3. (Berman (1964)) Let {X,,j = 1,2,---,n} be centered and station-
ary normal random variables with E(X;X;) = 15 and r;; = 1. Let IJT1 = [c,00)
and I;' = (—o0,c). Denote by F; the event {X; € Ic}} for ¢; € (—00,00), j =
1,2,--- ,n, where ¢; is either +1 or —1. Let K C {1,2,--- ,n}, then we have the
following:

(i) P{ ﬂ Fj} is an increasing function of ri; if €,6; = +1; otherwise, it is
jeK
decreasing.
(il) If{K;,l=1,2,--- s} is a partition of K, then

‘P{ N Fj}—llij{ N FJH < YYD rulelan iy,

jEK JEK; 1<l<m<s i€K; jeK,,

where ¢(x,y;r) is the standard bivariate normal density with correlation r, and i
is a number between 0 and r;;.

Lemma 2.4. Assume that b;(T), i =1,--- , N, are nondecreasing continuous func-
tions such that limp_ o ||b(T)|| = oo. Suppose that o(d,h) is a regularly varying
function with exponent a (0 < o < 1) at co. Then we have

lim sup XD >1 as.
T—oe o(d, [b(T)]))/2loglog |[b(T)]|

Proof. We can find an integer i (1 < ig < d) such that o;,(||b(T)]]) = o(d, [|b(T)])),
where ig depends on ||b(T')||. It is clear that

IX(b(T)l/(d, [b(T)]) = Xi, (b(T)) /e, (ID(T)]) =: Yo(T).

For § > 1, let |b(T})|| = 0%, k =1,2,--- . Put 23 = \/2(1 — &) loglog 6% for 0 < & <
1. Setting Ax = {Yo(Tx) > i}, then

(1 k
P(4y) > 1 exp(—(1-e¢)loglogt*) S o p(-e/2)
Ver  \/2(1 — ¢)loglog %

for sufficiently large k, where ¢ > 0 is a constant. Thus we have > ;- | P (Ak) = 00.
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Next, let us show that the condition (b) of Lemma 2.2 is satisfied. For j < k, if
io(|Ib(T3)[[) # io(Ib(Tk)I), then E{X;,(b(T};)) X, (b(Tk))} = 05 but, if io(|[b;]]) =
io(||bgll), where by = b(T}), then

[B{X, (5)) X, (bi)}| = o2 (11, ) + 02 (151 ]) — o2 ([ — by )
_b.ll?
3 (o amsty+ (1= a0 o)

L (o2 by + APl g2
2 o]

IN

and further

_ | ou(lbsl) . Ibllos (bl
il = QTN < 5 015 [bellow (16, )
1 /Iyl Lig(bgl) . ¢ Ibyl\ 0 Ly (el
(o) "Zeien (o) ZemeD

]_ !/ - 124 .
< —g—o (k=) 4 g=(A=a)(k=j) _. Niks

where L;,(-) is a slowly varying function and 0 < o < «a;, < &’ < 1. Let a9 =
min{a/,1—a”} and § = [o% logy l], where we take [ (j < [ < k) such that ;> > z;xy.
It follows from Lemma 2.3 that, for sufficiently large n,

3 {P(Aj N Ay) = P(A7)P(Ay) |

1<j<k<n

J=1 k=j+&+1
=:51 + 5s.

Consider the first sum S;. If 7 (0 < r < 1) is the maximum of |rj;| for 1 < j < k <mn,
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then we have

n—1 j+&

T 2 1—r\x?
P — _xj/2 _ il
Slgz Z Qm/1_7=2€ eXp{ <1+r)2}

j=1 k=j+1

(2.4)

n—1
2 2(1 — ¢)loglog &'
<e ]E_l e exp R 5

n—1 n—1

—22/2 (1oe 1) [~RO—€) < Z 22 1 RO-o)2
C e J (0] C e J R
(logy 1) - 27?36?

IN
?.

j=1

I

Il
—

¢ P(Aj)l_R(l_E)/Q,

J

where R := (1—7)/(1+r) and ¢ > 0 is a relevant constant. Next, consider the second
sum Ss5. For k — j > &, since

19 —24' Ja _ —a"/a
Irjkla? < npa? < (1—5) (z 20" a0 4 9 ]=2(1-a")/ 0)1og(z log 0)

< 3(1 — g) 7% log(l log 0),

we have

n—1 n n

So<ecl™? 2_: > m e~ (")) < Cl1<ZP(Aj))2. (2.5)

7j=1k=1 j=1

From (2.4) and (2.5), we obtain
> {P(aynan) - P4y P4y}
1<j<k<n
- cl—R(l—E)ﬂ(iP(Aj) + (iP(Aj)f),
j=1 j=1

and the condition (b) of Lemma 2.2 is satisfied whenever [ — oc. O
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Lemma 2.5.  Assume that the condition (ii) of Theorem 1.2 is satisfied. For

i=0,1,2,3, let al¥) = (agi), e ,ag\?) be positive N -dimensional vectors such that
a® _ @ (2 _ @)

; a;”’ > a; a;” >0 for each 7 = 1,2,--- | N. Then there exists a positive
constant C' such that

||a(0)+a(3)|| ||a(0)+a(2)||
/ do?(d,x) — / do?(d, x)
l l

a0 +a® || a® fa()|
o*(d, [a® +a®])) [a® — a® [ a® —a)|

=¢ a0 +a0[?

Proof. We have

/||a<°>+a<3> || Ja®+a®|
do®(d,z) — / do?(d, z)
Ja@+a® | la®+a0)]

_/M@H@Hhm“m“”@“@'dﬁu@+wam+amvwam+aww
[a© +a()| dz

(0) 4y 5(3) 0) L g 129 1L 5(2)

do?(d, x))d N /Ia +a@||+[la? +a V| —lalP+al?)| do(d, x))d

— ——=)dzx — |dx
dz ||a<0)+a(2)|| dzx

Ja@+a® |+ [a®+a® | [a®+a® | ot|a®+a® |—[a@+aD)|
|| z

d*o?(d,y

d ) ‘
dydx
al®4al)| y2 Y

(0) (3) (0) W1 11a0) (2)
+/||a +a'? [ +[a™ +a' || —lat™ +at | dO’Q(d,x)
[|[al®) +a@) || dx
=:1+J, say.

da



(N, d)-Gaussian random fields 13

Thus,
8@ a2 a2 ®+a® | o a®a® |- [a®a® | 20y
1< / / <62 2’ )dyda:
[a© +a) | x Y
(0) 4 4(3) 0) 4 a2 4 o2
[a®® +a || +[la®® +a' P || —[]a'® +a'|] o2(d, z + ||a(0) + a(2)|| _ ||a(0) + a(1)||)
< e 2
Ha(o)—‘,—a(l)u T

< (la® +a®| ~ a® +a®|)da

o(d, | +a®)
a0 + @2

< e (12 +a® | — a4 a®)|))

x (Ja@ +a@| — [a'” + a™))

o*(d, [a'® +a®)]))
’ (3) _ a® (2) _ M)
> C2 Ha(o) I a(l)HQ ||a a || ||a a ||

and

1@ +a® | +|]a@ +a® | [la@+a® | 2
J§61/ it ’x)>d:1:
2@ +a || r
0?(d,[|]a® +a®|))
C
2@ 1 a®)]
x (Il +a®|| - []a® +a®] - (Ja® +a®| — a® +aM|)

o*(d, [a® +a®])
||a(0) -+ a(2) ||
2 +a®)|? — a© +a®) |  (Ja® +a®| - a® +a®|?)
2a® + @]

C1

X

o*(d, [a® + a®|)
[T + a2

a® — a®[a® — a],

where ¢ > 0 is a constant. 0
Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. If a;(T) = b;(T) for each i = 1,2,---, N, then (1.2)
is immediate from Lemma 2.4. In what follows, let b;(T")/a;(T") be increasing for
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each i = 1,2,--- | N. Clearly, there exists an integer jo (1 < jo < d) such that
ajo([[a(T)]]) = o(d, [[a(T)])). Thus

IX(b(T)) — X9(b(T) — a(T))|

lim sup

T D) [ (T)
ey KB~ 3 (b(T) — (1)) 20
N (FYeu] Ia e

Without loss of generality, let 77 = 1. Noting that |b(T") — a(T)|| is increasing, we
can define an increasing sequence {75}, such that

o —acz) S aim)| = o) (2.7)
j=1
if T, (j = 1,2,---,i — 1) have been defined, by induction. Put a; = a(T;) and
b; = b(T;), i > 1, and let

X, (bi) — X}, (b; — az')'

7o ([|as])

Zi =

The proof of (1.2) is completed if we show that

a.s. (2.8)

lim sup L >1

For any given 0 < ¢ < 1, let B; = {Z; > (1 —e)n(T3)}, i > 1. First we will show
that Y °:°, P(B;) = oo. Put #; = (1 —¢)71(T;). Then, for sufficiently large 7, we have

1 1 1 1
R o A A

> exp(— 5 —a?) = (T )
=2 =T = I[N Tog [

and

i
P(B
Z 1ogHb )t Z i [

’LZO
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for some iy with ¢ > ig. Further, we have

1=10

m “ladl— b
—CZIO ||Z]_1 J” H 1||

< g ; (2.9)
i=ig | 23—1 a;l| + [|b1]|
A+ 2[|b
S—chog( H?zH+ by ]| >
i=i 13751 &l + [[ba ]l
where ¢ > 1 is a constant. Since ||a;|| is nondecreasing and lim;_, ., ||b;|| = oo, we

can find a constant cg > 1 such that

b b;
bl _, I

Jadl = 2]

for i > ig. It follows from (2.9) that there exists a constant K > 0 such that

- colla — ( collagl[\ N
Nlog byl < NS 1og(1 - “Toi] ) <K <W)
1=10 ’ =10 v

Therefore, we have

1+2

m

N
ZP(BZ-) > —— (log [[by,||)¢ — o0 as  m — 0.
— K

Now, (2.8) is proved if we show that condition (b) of Lemma 2.2 is satisfied. From
the elementary relation ab = (a? + b* — (a — b)?)/2, we have, for all i and j with
1 < J,

1

oo ([[aill)aj, (las])

E(Z:Z;) = E{(Xj,(bi) = Xj,(b; — a;))

X (X, (bs) — Xjo(b; —a;))}
1 2 (IIb; — by]}) — 02, (Ib; — b; — a;
——20j0(||az|y>o—m<\|aj|| {o7 (IIb; — byl]) ]O(ubj b; —a;|)
o2 (I'b; = bi +a;]) + o2 (||b; — b; —a; +a;)}

(2.10)

- : a —o' _
= o, (), umu“%mb i +ayl]) — o7, ([b; — b

— (05, (Ibj = b; — a; +ay[l) — o7 (IIb; — b; — a]) }.
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If the right hand side of (2.10) is less than or equal to zero, that is, UJQ.O is a nearly

convex function with 0 < o < 1/2, then P(B; N B;) < P(B;)P(B;) by (i) of Lemma
2.3, and hence (b) of Lemma 2.2 holds true. On the contrary, if the right hand side
of (2.10) is larger than zero, then

1

7o (llaill)ojo (Ila; )

[b; —bitasl ) b —bi—a;+a|| )
« / do? () - / do? ()}
[bj—bi—a;+ail [bj—bi—aj|

Applying Lemma 2.5 with a® =b,; —b; —a;, al) =0, a® = a; and a® = a; +a,,
the right-hand sideof (2.11) is less than or equal to

C o3, (Ib; — bi + ail)[|a]| [|ay]|
i (ail)a, (la; )lbs = bi — aj|?
By the definition of {7;}5°,, we have

e (b Ya) Yl = [Ya] e
=1 l=i l=i

E(Z;Z;) <

(2.12)

and

Jj—1 J
by —bi—ayl = || > al| = || Da|, jzi+o (2.14)
l=i+1 l=1

for some 0 < p’ < 1. Noting that ||b;||/||a;|| is increasing, then it follows that

i b; b; — b, i a
||a||2|| ||21_||g ||:1_H21_+1 lHZl—p (2.15)
laj]] — byl bl byl

for some 0 < p < 1. From (2.11)-(2.15) and the property of slowly varying function
L(-), we have

car (I i 2Dl llayl
Ujo(||aZ||)0]0(||a]||)||Z iaul?

<cHZalH“ (a1 1)~ O‘L(HZazH) (iDLl )~

(j — )22 2||ay || '~ L()| (j — 9)ai]|)?
L(ad )L (D]
R R )

E(Z:Z;) <

IN
o

c(j—i
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where ¢ > 0 is a relevant constant. The remainder of the proof is exactly the same
as the corresponding proof of Theorem 2 in Ortega (1984). The details are omitted.
O

The following lemma can be found in Lin and Lu (1992), which is used to prove
Theorem 1.3:

Lemma 2.6. Let {&,&, : n > 1}be a sequence of random variables. If P{&, > &} — 0
as n — oo, then there is a subsequence {&,,} such that

limsupé,, <¢ a.s.

k—o0

Proof of Theorem 1.3. First, consider the case 0 < r < oo. From the condition
(iii), there exists a positive number ~ such that

(D)

> |log |[b(T)|||"/1°%7,
la(T)]

provided T is large enough. Thus, it follows from (iii) and Lemma 2.1 that, for any
e >0,
X9t +5) — XUt)|
P sup sup > V1+2¢
{ lei<io) isi<iacn o(d, @)l vs(T) }
[b(T)[I\N 4(1 + 2¢) [b(T)|I\N (2.16)
<(on) =Gz = (mmr) )
la(T)]] (2+¢)? [a(T)]]

< ¢|log |[b(T)|||~N7e/ ()7 1s0) o a5 T — oo,

and Lemma 2.6 implies

d . Xd t
liminf  sup sup [ X%t +s) ®)l <1 as.
T—oo g)<b(m)| sli<lla(m)) o (d; [[a(T)]]) ys(T)

Hence, by (iii), we get

liminf  sup Sup [ Xt +s) — XUt)||
T—=0 i< si<la@) o(d [a(T)]]) v2(T)
Xt — X4t T
T—oo e <bm) Isi<lam)) o(d [a(T)[)ys(T)  ~2(T)

Nr \1/2
< ( > a.s.
1+ Nr
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Next, consider the case r = 0. It follows from (iii) that, for any € > 0,

b
H ( )H <|10g||b(T)|||5/((2—|—E)Nlog0)

for T large enough. Similarly to (2.16), we have

P{ sup sup Ile(tJrS)—Xd(t)H>\@}

lei<ib si<ia)y o (d, la(T)[)v2(T)
[b(T)[|\N Lr 2 \2
SC(Ha(T}H) (-3 (5752) =dm)

< c[log [b(T)| /(442180 — 0 as T — oo,

which implies that

X%t — X4t
liminf  sup sup | X (¢ + 5) @)l <0 as.
T—oo 14 <b(m)] [sl<llay o (ds [[a(T)[)y2(T)

Combining (2.17) with (2.18) completes the proof of Theorem 1.3.

(2.18)

To prove Theorem 1.4, we need the following Lemmas 2.7-2.10. The proof of

Lemma 2.7 is similar to that of Lemma 2.5.

Lemma 2.7. Assume that the condition (ii) of Theorem 1.2 is satisfied. Let a > 0
and b > 1 be N-dimensional vectors. Then there exists a positive constant C such

that

llall ||b+1]] llall bl 2(d b+1
‘/ dO'Q(d,.fU)—/ dO'z(d,l') SCO- ( ?HaHH + H)
I I

all |Ib] al [Ib—1] b — 1]

Lemma 2.8. (Slepian (1962)) Suppose that {V;, i=1,--- ,n} and {W;,i=1,---,
n} are jointly standardized normal random variable with Cov(V;, V;) < Cov(W;, W),

i # j. Then, for any real u; (i =1,--- ,n), we have
P{V;<w;, i=1,--- ,n} < P{W; <w;, i=1,--- ,n},
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Lemma 2.9. (Leadbetter et al.(1983)), Li and Shao (2002)) Let N = (ny,--- ,ny
be a N-dimensional vector, where ni,--- ,ny = 1,2,---, L. Suppose that {Y(N)

18 a sequence of N-parameter standard normal random vamables with A(N,N') :
Cov (Y(N),Y(N)) for N # N such that

M~ —

§ := max |A(N,N')| < 1.
N#N/

Let {ln = (Iny, -+ ,lny)} be a subsequence of {N}. Denote m = (my,--- ,my) with
m; < L, 1 <1< N. Then, for any real number u, we have

P{ max Y (ly) < u}

1<N<m
< (@)} Ty S N esp( - ) (219)
N ’ 1+ [A(N, N
N#£N
1<N,N'<m

for some ¢ > 0, where A(N,N') = A(ly,ln) and ®(u) = [* \/%e—yr“/? dy.

Estimating an upper bound for the second term of the right hand side of (2.19),
we obtain the following lemma, whose proof is similar to that of Lemma 7 in Choi
and Koéno (1999).

Lemma 2.10. Let Y(N), § and A\(N,N') be as in Lemma 2.9. Further, assume that
the inequality
AN, N[ <IN = N7

holds for some v > 0. Set u = {(2 — 1) log(H 1m1)}1/2, where 0 < n < (1 —
Nv/(L+v+9). Then we have

o= > \)\(N,N’)|exp< 1+|/\(;N’><C(Hmz)5’

N#£N
1<N,N'<m

where 6g = {v(1—=6)—n(1+d5+v)}/{{1+v)(1+65)} > 0 and c is a positive constant
independent of N and wu.

Proof of Theorem 1.4. The inequality (1.4) is obvious when r = 0. In what
follows, we assume that 0 < r < oo. For 1 < 6 < e, define

Brj ={T:0"' <|b(T)| <6, 67! <a(T) <6 1<i<N},
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where k and j; are integers. Denote j = (ji, - ,jn), 0% = (%, -.., §%~) for
—00 <a<ooandj= % Zfil Ji- In the sequel, we always consider k and j such
that By j # (. Note that ||a(T)| > 627! for T € By ;. By the condition (iii), there
exists 7 > 0 such that

j <k+1—7(loglogt*)/(log)* =: K

for k sufficently large. Noting that

Yo (T) (Nr—kl)l/?’

I -
700 75(T) Nr

the inequality (1.4) is proved if we show that

x4 T)) — X¢
liminf  sup | XAt +a(T)) Ol >1 a.s. (2.20)
T—oo g<by  o(ds la(D)]]) vs(T)

We can write

lim inf sup HXd(t +a(T)) — Xd(t)H
T—oo ygi<p(my)  old [a(T)|]) vs(T)

(6 1 69) — X(1)] (221)
> liminf inf - .
[kl—o0 JSK ¢ <or-1 o(d, [|03]|) /2N log g* 2T
— limsup sup sup sup
k|—oo <K |t <0k 6i—1<s<6]
| X4t +600) — XUt +s)|  o(d |69 — 61
o(d, |6 — 6i-1|) \/2N log 6F—It1  o(d,[|i~1])
=. Jl - J2.
First, we claim that
Jp>1 a.s. (2.22)

By the definition of o(d, h), there exists an integer ¢ (1 < ¢ < d) such that o¢(]|6%]|) =
o(d,[|6%])). Put

1

VNM

<9k—1—j1, . ,Hk_l_jN)

ﬁ(k,_]) = (5(k7]1)7 T 75(k7]N)) =
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for sufficiently large M > 0. Then

X (M1 ) — X (M16
Ji1 > liminf inf  max (M1 +6) — X (M167) . (2.23)

|k|—oo j<K 1<1<p(k,) ||0J|| \/2 log 15 (k JJ)

Let . . .
Xc(M16) 4+ 67) — X (M16Y)

o (/163]])
Similarly to (2.10), we have, for all  and I’ with { > I,

Z;(l) = , 1 <1< B(k,j).

)‘j(l,l’) = Cov(Zj(l), Zj(l/))
= m{OE(HMU — l’)HJ' + gj”) _ UE(HM(I B l')0j||)

— (o2(IM A = 1)) — o2 (| M (T~ 1")6] OJH))}

(2.24)

If the right hand side of (2.24) is less than or equal to zero, then it follows from
Lemma 2.8 that, for any 0 < € < 1,

P{ nf max U = Vi _5}
JSK 1<I<pB(k.j) \/2 log (T, B(K, ji))

<> {20 it00)) |

<K

Qﬁilﬁ(kd’z‘) (2.25)

On the other hand, if the right hand side of (2.24) is positive, that is, 0'? is a nearly
convex function, then it follows from the regular variation of Jg and Lemma 2.7 with

a=60 and b= M(l — ) that

Ll ’ 16 | M -1y 41 ” 168 | M (-1 ”
L) / doz(x —/ do?(x
¢ ¢
"c |‘9”| 105 1M (1—1)] 1031 1M (-1~ 1))

aZ(le9] [|M (1 =V) +1]))
o o(|e[) | M- 1) — 12
M1 —1)+1]
1M1 —1)— 1]
<=,

<C | M1 —1) +1]2>2
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for sufficiently small £ > 0, where v =1 — a > 0. Let us apply Lemmas 2.9 and 2.10
for

Y(h) = Z;(1), 1<1<pkj), m=p(k,j),
ML) =N <=V, v=1-a>0,
u={(2—n)log(IIX, B(k, j;)) }*/?, n=2e.

Then we have

i Z;(1) < JTT 6}

P{ inf . B
J<K 1<1<B(k.j) \/2 log (I}, B(k, ji))

= Z {(é(u))Q%m,ji) +c(ﬁﬁ(kaji)> _60}

K

<) { exp (—coNF=D) 4 ¢ (9N<k—z>)—5o}

i<

S
|

(2.26)

=

<c Z 9—Ndo(k—j) < ¢~ Ndor(logg log 6'%1)/log 6
J<K

<ec |k‘—N6ofy/log9

for sufficiently large |k|. Note that the right hand side of (2.25) is less than or equal to
that of (2.26). Taking 6 > 1 such that log 6 < Ndp7y in (2.26), then the Borel-Cantelli
lemma implies (2.22) via (2.23).

Next, we turn to show that

Jy < 2ce/? a.s. (2.27)

for any small ¢ > 0, where ¢ > 0 is a constant. Since o(d, h) is regularly varying, we
have . _
o(d, |6’ — &)

- < ce®/?,
o(d, |61

Therefore, (2.27) is proved if we show that

X4t +63) — Xt
limsup sup sup sup | ( +_ ) (t+s)l — <2 as. (2.28)
k|l—oo <K |t|<6* 0i-1<s<6i o(d,||03 — @3=1|)\/2N log #*F~I+1
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Applying the same way as the proof of Lemma 2.1, then it follows that, for sufficiently
large k,

XUt + 69) — XUt
P{ sup sup | ( ‘f‘. ) (t+s)| . 22_'_5}
lel<or 6i-1<s<ei o(d, |03 — @i=1|)\/2N log #*—i+1

ok 4(2+¢)? :
= e — e T|¥ eXp( 2402  °F )

<ec (93N)—(k—l’)‘

Since

i >N < i k| 77/ 1080 < o0,

lk|=1j<K |k|=1

we obtain (2.28) and hence (2.20) holds true by (2.27), (2.22) and (2.21). O
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