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Abstract

In this paper, we establish some limit theorems on the combined Csorgd-Révész increments
with moduli of continuity for finite dimensional Gaussian random fields under mild conditions,
via estimating upper bounds of large deviation probabilities on suprema of the finite dimensional

Gaussian random fields.
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1. Introduction and results

Csorgé and Révész [8] proved some limit theorems on increments of the Wiener
process W(t), 0 < t < oo, which are related to the well-known Erdos-Rényi law.
Among their theorems, we introduce the following result:
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Theorem A. Let ar be a nondecreasing function of T > 0 such that 0 < ap <
T, T/ar is nondecreasing and limy_, o (log(T/ar))/loglogT = co. Then we have

b s W ar) ~ W)

=1 a.s., 1.1
T—o0 o<t<T v ar yr (1.1)

1/2
where yp = {2<log(T/aT) - loglogT)} , T >e.

Since then, many various limit theories on the similar Csorgo-Révész type incre-
ments as in (1.1) for fractional Brownian motions, renewal processes, partial sum
processes, Gaussian processes and related stochastic processes have been developed
in 1, 3,4, 6,9, 10, 12, 13, 16, 18, 21, 26] and etc.

On the other hand, Cséki et al. [8] obtained the following modulus of continuity for
a centered Gaussian process X () (0 <t < oo) with stationary increments o2(s) :=
E{X(t+s)— X(t)}*

Theorem B. Let o(s) be a nondecreasing and continuous reqularly varying function
with ezponent a (0 < a < 1) at 0, that is, lim,_o {o(xs)/o(s)} = a* for = > 0.
Assume that, for any a <b < c <d,

E{ (X(b) - X(a)) (X(d) - X(c))} <0. (1.2)

Then we have Xt 4k (i
lim sup Xt +h) = X(t)| =1 a.s. (1.3)

h—0 0<i<1 o(h)+/2log(1/h)

In this paper, we establish some limit theorems on the combined Csorg6-Révész
increments with moduli of continuity for finite dimensional Gaussian random fields
under mild conditions under mild conditions.
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Throughout the paper, we always assume the following conditions: Let {X;(t), t €

[0,00)N}, 5 =1,2,--- ,d, be real-valued continuous and centered Gaussian processes
with X;(0) = 0 and E{X;(t) —Xj(s)}2 = o2(|It — s|)), where o;(h) are positive
continuous functions of A > 0 and || - || is the usual Euclidean norm. Put

o(d,h) = 1@?2(01 aj(h)

and assume that, for some o > 0, o(d,h)/h® is quasi-increasing, that is, there is a
constant ¢ > 0 such that o(d,s)/s* < co(d,t)/t* for 0 < s <t < 0.

Let {X4(t) = (X1(t), -+, Xq(t)), t €[0,00)V} be a d-dimensional Gaussian pro-
cess with norm || - || and N parameters t1,--- ,tn € [0,00), where t = (¢1,--- ,tn).
We call the process {X4(t), t € [0,00)V} a d-dimensional Gaussian random field.
The realizations of random fields {X;(t), t € [0,00)V} for j = 1,2,--- ,d, are as-
sumed to be different objects. Moreover, the choice of coordinates of the parameter

t = (t1, -+ ,tn) is not necessarily limited to length and time but any scale of mea-
surement might be involved.

Now, we introduce some notations to be used in this paper: Let t = (t1,--- ,tn)
and s = (s1,--+,sy) be vectors in [0,00)". Denote:

0=(0,---,0) and 1=(1,---,1) in [0,00)",
t<s if t; <s; forall integers 1 <i < N,
t:l:SZ(tlztsl,--~,tN:|:SN), tS:(tlsl,"-,tNSN),

at = (aty,--- ,aty) for a € (—o0,0),

h:(hl,---,hN)e<0,\/LN>N.

For i = 1,--- N, let f;(h) and g;(h) be positive real-valued continuous functions.
Define:
f(h) = (fi(h),---, fx(h)), g(h)=(g1(h),---,gn(h)),
() = {2(N o (70 ) +log [Hogo(d. lel )}
[£(h)[[ /2
() = 2V 108 (i)

where log x = In(max{z, 1}).

The following results generalize some main theorems on the Csorgo-Révész type
increments of one dimensional Gaussian processes with one parameter by setting
h=1/T(0<T < o0)in [1, 5, 8, 18, 26]. The main results are as follows:
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Theorem 1.1. Suppose that
() |f(h)/g(h)[ + lgh)[| — oo as h—0.

Then we have

X4(t — XUt
limsup sup sup X%t +5) (®)] <1 a.s. (1.4)
h—0 o<t<f(h)o<s<g(h) ©O(d,|g(h)[)y1(h)

The condition (i) implies that f(h) and g(h) may be many diverse functions.
However, in order to obtain the opposite inequality of (1.4), the conditions on f(h),
g(h) and o(d,-) are a little bit restricted as in the following Theorem 1.2:

Theorem 1.2.  Suppose that o(d, h) is a regularly varying function with exponent
a(0 < a<1)at0 oroo and that there exist positive constants ¢1 and co such that,

for h >0,

. do?(d, h) o?(d, h) d*c?(d, h) o%(d,h)

(ii) o ‘Scl and —r < cy R
Assume that

i WD

h—o log|log|/g(h)ll|
Then we have
X4 h)) — X¢
liminf sup | X7t + g(h)) ®)l >1 a.s. (1.5)

h=0 oce<rn)  0(d: [[g(h)[)r2(h)

The class of variance functions o2 satisfying (ii) contains all concave functions with
0<a<1/2 (e.g. o%(d,h) =+h) and convex functions with 1/2 < a < 1. We recall
that the correlation function on increments of a stochastic process with stationary
increments is nonpositive if and only if its variance function is nearly concave (cf. see
(2.7) and (1.2) of this paper, (4.2) in Cséki et al. [5] and (2.7) in Lin and Qin [20]),
and vice versa.

Also, the condition (iii) guarantees that the class of vector functions f(h) and g(h)
contains many various functions such that ||f(h)| and ||g(h)||, respectively, can go to
0,00 or constants as h tends to 0 (cf. Examples 1.1-1.3 of this paper).

From Theorems 1.1 and 1.2, we have the following
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Corollary 1.1. Under the assumptions of Theorem 1.2, we have
: Xt +5) — XU(t)]
lim sup sup =1, a.s.,
h—0 g<t<f(h) 0<s<g(h) o(d,||g(h)[|)y2(h) (1.6)
X4t +g(h) — X4t '
i X RO XU

h—0 o<e<en)  o(d; [g(h)[)y2(h) ’

For one-parameter Wiener process with o(1,h) = v/h, the similar results as (1.6)
can be found in Csoérgé and Révész [8], Lin and Lu [18] and etc. With N =1 in
Corollary 1.1, let f(h) = 1/h = T (h > 0), o(1,h) = vh and g(h) = ar < T (ar
may be a constant). Then it is obvious that (1.1) follows from Corollary 1.1 under
conditions of Theorem A.

The above results can be applied to develop the limit theories on the Csorgo-
Révész increments of finite dimensional random fields with respect to the following
stochastic processes: Ornstein-Uhlenbeck process (e.g. [5]), renewal process [24],
lag sum process [2, 18], local-time process [6, 19], partial sum process [7, 12, 25],
self-normalized partial sum process [11, 22] and etc.

Example 1.1. (large incremental result) Let {X;(t), t € [0.00)N}, j =1,2,-- ,d,
be N-parameter fractional Brownian motions of orders a; with 0 < a; < 1, that is,
let {Xj(t), t e [O.OO)N}, j=1,2,---,d, be Gaussian random fields with X;(0) =0
and o;(h) = h®, h > 0. When a; = 1/2, then {X;(t), t € [0.00)V} are standard
Wiener random fields. For eachi =1,2,---, N, let h; = 2' e~ T for T > log(2VV/N).
Then h = (hy,--- ,hn) = e T(2,---,2"). For convenience, put

N —1
gi(h) = z( 11 hk) and f(h) = N7 g(h).
k=1
Then o;(h), f(h) and g(h) satisfy all conditions of Corollary 1.1 with
g(h) = eNT 9= N(N+1)/2 (1,2,--- ,N)=:G1(T) - 00 as T — o0,
1/2

e = 22NN 1)@N 4 1)/6} N = Ay N,
Yo(h) = NV2T and o(d,|g(h)|) = (Ax eVT)* for a = max a;.

1<j<d
Thus we have, by Corollary 1.1,

Xt — X9t
lim sup sup | Xt +5) ®)l = V2N
T—00 g<t<eNT G (T) 0<s<Gy(T) eeNT\/T
X4t + G1(T)) — X4t
lim sup Xt + G (T)) ®)l =V2N(AN)® as.
T—00 <t <eNT G4 (T) eoNT\/T

(AN)a a.s.,
(1.7)
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Example 1.2. (small incremental result) Let {X;(t), t € [0.00)N}, j=1,--- ,d,

be as in Lemma 1.1. For each i = 1,2,--- ,N, put h; = Vie T for T > logN.
Define:

N
gi(h) = z( H hk) and f(h) = eV7/2g(h).
k=1
Then
gh)=vVNle N (1,2,--.  N)=:Gy(T) -0 as T — oo,
lgm)ll = {(V+ DINEN + 1)/6}1/26—” = By e VT,

v2(h) = NVT and o(d, |g(h)])) = (Bxe V1) for o/ = min «;.

1<j<d
Thus we have, by Corollary 1.1,

X4t — XUt :
lim sup sup | X +,S) ®)l = N(By)® as.,
T—00 g<t<eNT/2Gy(T) 0<s<Ga(T) e—a'NT\/T L3)

X4t + Go(T)) — XUt , '

i s KGO XL
T—oo OStSENT/QGQ(T) 6—06 NT\/T

The following example is an extension of Theorem B (cf. [4]):

Example 1.3. (generalized modulus of continuity) Put f(h) = 100 and g(h) = h
in Corollary 1.1. Then we have

Xt +5) — XIUe)]|

lim  sup sup = V2N a.s.,

h—0 o9<¢<100 0<s<h o(d, ||h||)/log(1/|/h])
X9t +h) — XU

lim  sup = V2N a.s.

h=0 o<t<100 o(d, ||h[|)/log(1/[h][)

(1.9)

2. Proof of main results

In order to prove Theorem 1.1, we need the following lemma (cf. Lin and Choi
[17]):
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Lemma 2.1. For any € > 0 there exists a positive constant C. depending only on
e such that, for all x > 1,

sup sup
0<t<f(h) 0<s<g(h) o(d,[|g(h)l])

[E R 22
SCE(Hgaa)H) o e (= )

b { Xt +5) = XO) x}

Proof of Theorem 1.1. Let # =1+ ¢ for any given € > 0. Define

W
Ay =1{h: 0" < <Y 0<k < oo,
{ 5@ J
Ay = {h: 09 < o(d,gm)])) < 1, he A}, —o0 < < oo,

gi(hy ;) =sup{gi(h) :h € Ay ;}, i=1,--- N,
fithg ;) =sup{fi(h) :he Ay ;}, i=1,--- N.

By the condition (i), we have

limsup sup sup [ Xt +5) — X*(e)]
h—0 o0<t<f(h) o<s<g(h) O (d,[g(h)|)y1(h)

: [ X9t +5s) — X(t)]
< limsup sup sup  sup sup
j|+l—o0 k>1>0 he A, ; 0<t<f(h) 0<s<g(h) O (d,|lg(h)[)y1(h)

X4(t — X4t
< limsup sup sup sup X +S) , Ol
jl+l—o0 k>l 0<t<f(hy ;) 0<s<g(hy ) 67 D(k, j)

- [ X4t +s) — XU(t)]
< @ limsup sup  sup sup —.
i +l—oo k>1 0<t<f(hs ;) 0<s<g(hx ) O(d; [|g(hk ;) [)D(k, j)

(2.1)

where D(k,j) = {2(log 0" + loglog §171)}/2. Now, we will show that

limsup sup  sup sup IX(t +5) — X(t)]
jl+l—oo k21 0<t<f(hy ) 0<s<g(hy ;) O(d; [|g(hw;)[)D(k, j)

<4 a.s. (2.2)
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Applying Lemma 2.1, there exists C. > 0 such that

X4t — X4t
Plow sp a9 X0
k>l 0<t<f(hj ;) 0<s<g(hy ;) o(d, ||g(h,;)|)

f(h 4(1 +¢€)? .
<o 5 () o e )

2\ g ()

> GD(k,j)}

S CE Z efekN/Slj vV 1|7(3+E)/3
k>1

< C. |,] V. 1|—(3—|—5)/3 0—5lN/3.
for sufficiently large |j| 4+ [, where j V 1 = max{j, 1}. Hence we have

Xt +5) — X(t)]
Z ZP{ sup  sup sup DDk, ) > 9} < 00,

j=11=0 \ k=10<t<f(hy ;) 0<s<g(hy,;) o(d, ||lg(hg,;

and (2.2) follows from the Borel-Cantelli lemma. Combining (2.2) with (2.1) yields
(1.1) by the arbitrariness of #. This completes the proof. O

The following Lemmas 2.2-2.5 are needed to prove Theorem 1.2:

Lemma 2.2. Assume that the condition (ii) of Theorem 1.2 is satisfied. Let a > 0
and b > 1 be N-dimensional vectors. Then there exists a positive constant ¢ such

that
‘ /|a|| [b4-1]| (d x) B /|a| [Ib]| dGZ(d x)' oy 0'2(d, ||a||||b + 1”) .
lall bl lall [b—1] - b —1f2

Proof. We have

lafl b+1] lall b
‘/ do?(d x)—/ do?(d, )
Y lafl b—1]

/Ilal [+1f+lall [lb=1[—llall [Ib] <d02(d,x + |lal| IIb]| = ||a]| [[b — 1]|)
I

al [[b—1] dx
do2(d lall b1+ [all b—1[~llall Bl , 7,2(4
B g ( 7$>>d.’13+/ ( o ( 7x>>d.’13
dx lall [bl] dx
Il o+ all [=L=lall oIl rallall Iol—lall IB=11 | 252 g,
g/ / ‘—y‘dyda:
lall [b—1] .
lall Io-+1+lall IIb—1]—llall IB]l | 7,2 (g
iy ),
lall bl dx

= Il+IQ, say.
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Thus
lall Ib+1]|+llall Ib=1]=[[all bl rz+all [[bl—[lall b1 2(d
I S/ / (020 (2’y)>dydac
l[all lb—1]] x y
S(QL/MMIW+HH%MHW—1W%aHWﬂ <02@L$‘+”3HHb!“HaHHb‘—1H)>
llall Ib—1]] z

< (Iall bl = flall b = 1]} da

_ 2 al b+ 1))
2l b~ 1]

L%l b+ 1])

ST -t

(llalt I+ 1] = llall ] (lall bl = {lall > — 1])

where ¢ > 0 is a constant, and

llall [[b+1|[+]lall [[b—1]—]a] ||b]| 2(d
I < / (c1 M)dw
|

a| bl x
2
< ey R AL (al -+ 2~ al bl = (lall D] al b~ 11))
_ (@]l b+ 1))
Jall o]
(Lol -+ 207 = Jal? ol = (al ol - I = 1)
2fall [b]

o?(d, ||| [[b + 1[])

]
ST

Lemma 2.3. [23] Suppose that {V;,i = 1,--- ,n} and {W;,i = 1,---, n} are
jointly standardized normal random variable with Cov(V;,V;) < Cov(W;, W;), i # j.
Then, for any real u; (i =1,--- ,n), we have

P{V;Suw ZZl?;n}SP{Wzgum 2:1,,n},
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Lemma 2.4. [1, 3, 14, 15] Let N = (ny,---,nn) be a N-dimensional vector,
where ny, -+ ,ny = 1,2,--- , L. Suppose that {Y (N)} is a sequence of N-parameter

standard normal random variables with A(N,N') := Cov (Y(N),Y(N')) for N # N
such that

§ = g;éal\?ﬂA(N,N'ﬂ <1 and | MN,N)|:=|A(ln,Iv)| < |IN =N~

for some v > 0, where {Iy = (In,, - ,lny)} is a subsequence of {N}. Denote m =

(ma,---,my) withm; <L, 1<i<N. Setu={(2- )log(H )}/,where
0<n<(1=98r/(1+v+93). Then we have

—do

P{l%agcmy(lN) < u} < {®(u) QiN=1 -I-C(Hm) : (2.3)

where ®(u) = [* re 024y 5o = {v(1—08) —n(1+0+v)} /{1 +v)(1+86)} >0
and ¢ > 0 is a constant independent of N and u.

Proof of Theorem 1.2. Let ky,--- ,kn, j1, -+, Jn be integers. Denote:
1 & 1
k:(k17."7kN)7 J:(j]J...)JN :NZ Jzﬁzlj'L?
Q¥ = (9% ... 9%~) for any given 6 >1 and a € (—00,00).
Set

Bij={h:0%"1 < fi(h) <% ¢! <g(h) <6 1<i<N}
Note that ||g(h)|| > 67~ for h € By .

First, assume that ||g(h)|| — 0 (or c©) as h — 0. By the condition (iii), there
exists 7 > 0 such that

q:=k—j>~(loglogfll)/(logh)? =: J

for sufficiently large |j|. Put m; = [0*~7i=1/M], 1 < i < N, where M > 0 is large
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enough and [-] denotes the integer part. By (iii), we can write
X4t +g(h)) — XUt
P o <L
h=0 o<t<sn)  o(d; [[g(h)[[)72(h)
X4t +63) — Xt
> liminf inf  sup | X7(e + ©) - ®l
lmee a>Tost<exr o(d, [|©9]) (2log [T;2; ma)

1/2

— limsup sup sup sup (2.4)
ljl—oc  g>J 0<t<Ok ©i-1<s<Oi
X4t +©9) — X9t +5)| o(d,]|© — &1
o(d, €3 — ©i-1|) (2log [T, ms)/?  o(d, [©371]])
=: Q1 — Q2.
First we will show that
Qi>1 as. (2.5)
By the definition of o(d, h), there exists ig > 0 (1 < ig < d) such that oy, (||©]]) =
o(d,||©®3|)), where ig = ig(j) depends on j. Put m = (my,--- ,mxy). Then
. J)y — X, J
(1 > liminf inf max Xio (M1 +1)6)) ;QO(MII/@Q )
ljl=00 a>J 1<lsm 4. (110§ |)(21og [1, mi) (2.6)

U; (1
=: liminf inf max O 1/2
lil—oe a>J 1<t<m (9106 TTY. ;) /

and (2.5) is proved if we show that with probability one the right-hand side of (2.6) is
greater than or equal to one. Using the elementary relation ab = (a®+b%—(a—b)?)/2,
then it follows that, for all I and I’ with I > ',
(A1) = [Cov(Us(1), Us (1))
_ 1
207 (/163]])

— (0% (IM@ = 1)) —of (M1 V)6 — 9j||))}-

{2 (1M -1)07 + &) = o2 (IMAE-1)O) (97

If the right hand side of (2.7) is less than or equal to zero, then it follows from Lemma
2.3 that, for any 0 < € < 1,

P{ inf max Uj(l) <+1- 5}
¢>J 1<l<m /2 log 1Y m;

<y {<I><\/(2 %) logHiI\lei>} i

q>J
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On the other hand, if the right hand side of (2.7) is positive, that is, o7 is a nearly
convex function, then it follows from the regular variation of o7 and Lemma 2.2 with
a=0)and b= M(l —l) that

IO [[M@E-1)+1]| &3l @-1)]|
do? (x —/ da?o(x)
I

A (1 l/ ‘/
Ak D < o ||@J|| 13| [|M(1—17)|
ol (|93 [[M@E—1)+1])

eI M E=1)—1]

<c
i0<||@J||> I —1) = 1|7
MU-U)+1]? o
HM@ — 1|{2 1M - 1)+ 1P
<eli—v

for sufficiently small & > 0, where v =1 — a > 0. Let us apply Lemma 2.4 for

Y(h) =U;(), 1<1<m,
ML) = INET) < gl =],
u={(2-n7) logﬂﬁvzlmi}l/Q, n = 2e.

Then we have

P{ inf max Uj(l) <+1- 6}
¢>J 1<l<m /2 log 1TV m;

<> {exp(—c@ENq) +c(9Nq)_§°} (2.9)

<c § :0—N50q < ce—Néofy(loge logGlj‘)/logQ
q>J
1 —N§ log 0

< clj 07/ log

for sufficiently large |j|. Note that the right hand side of (2.8) is less than or equal to
that of (2.9). Taking 6 > 1 such that logf < Ndgvy in (2.9), then the Borel-Cantelli
lemma implies (2.5) via (2.6). Now, we turn to show that

Qs < 2ce?  as, (2.10)
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for any small € > 0, where ¢ > 0 is a constant. Since o(d, h) is regularly varying, we
have . g
o6~ &) _

o(d,[|©=H])  ~
Therefore, (2.10) is proved if we show that

Xt +06J) - Xt
limsupsup sup sup [ X°(t + &) (t+s)] <2 as. (211)

ljl—oo g>J 0<t<ok @i-1<s<oi o(d, [0 — 0i=1|)\/2 log TN m; —

Applying the same way as the proof of Lemma 2.1, then it follows that, for sufficiently
large ||,

X4t 4+ 63) — X4t
P{ sup sup | .( +. ) (t+s)l 22+€}
o<t<ek @i-1<s<oi o(d, ||©F — ©I71|),/2 logﬂfilmi
oNE 4(2 + ¢)?
< : : T Nglogh
=“Jei —@J—luNe"p( (2+ez T )
< ch3Na,

Since
(e @] oo
DD IALETS SIS
l7]=1¢>J l71=1

we obtain (2.11) and hence (1.5) holds true by (2.10), (2.5) and (2.4).

Next, assume that the vector function g is constant. For a constant ¢ (—oo <
¢ < 00), let g(h) =©° = (6°---,0° be a N-dimensional vector. According to same
lines as above, put m; = [#¥=¢~1/M], 1 <i < N, in By ;. By (iii), we can write

Xt h)) — X%(t
bint s IX(E+ 8() — X9(0)]
h—0 o<t<f(h) o(d, ||g(h)|)y2(h)
X4t ©) — X%t
> liminf  sup | Xt + ©°) ~ ()||1/2
koo o<e<ort o(d, ]| 0¢]) (2 log [T, mi)
X, (Ml+1)0°) — X, (M1O°
> liminf max (ML +1)0°) ~ o l1/@2)
oo dst=m g ([102])(2 log [Tz, ™)

Defining
Xi, (M1+1)0°) — X;,(M16°)
i, (19°])) ’

Ue(l) =
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we can obtain

(1
P{ max Ue) §\/1—8}§009_N50k
1<l<m /2 long\lei

for some ¢y > 0. Thus

V2 log ITY. m;

This completes the proof of Theorem 1.2. 0

> l
ZP{ max eV §\/1—£}<oo.
— 1<I<m
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