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1 Introduction and main results.

Let {X, X,,;;n > 1} be a sequence of independent identically distributed random variables (r.v.’s) and
set Sy, = > r_; Xk, M,, = maxy<y, |Sk|, for n > 1. Also let logz = In(x V e), loglog z = log(log z) and
¢(x) = v/2zlogx. The following is the well known complete convergence firstly established by Hsu
and Robbins (1947):

iPﬂSn\ >en} <oo, >0

n=1

if and only if EX = 0 and EX? < co. Baum and Katz (1965) extended this result and proved the

following theorem.

Theorem A Let 1 <p<2andr >p. Then
Zn"_zPﬂSn\ >en!/P} <00, >0
n=1

if and only if EX =0 and E|X|™ < co.

Many authors considered various extensions of the results of Hsu-Robbins and Baum-Katz. Some
of them studied the precise asymptotics of the infinite sums as ¢ — 0 (c.f. Heyde (1975), Chen (1978),
Spataru (1999) and Gut and Sp&taru (2000a)). But, this kind of results do not hold for p = 2. However,
by replacing n'/? by v/nloglogn, Gut and Spataru (2000b) established an analogous result called the
precise asymptotics of the law of the iterated logarithm, and Zhang (2001) gave the sufficient and
necessary conditions for such kind of results to hold. By replacing n'/? by v/nlogn, Lai (1974) and

Chow and Lai (1975) considered the following result on the law of the logarithm.

Theorem B Suppose that VarX = o and r > 1. Then the following are equivalent:

anﬂp{Mn >ep(n)} < oo, forall e >ovr—1;

n=1

n""2P{|S,| > ep(n)} < oo, forall ¢ >ovr—1;
=1

n

an72P{|Sn\ >ep(n)} < oo, for some e > 0;
n=1

EX =0 and EX|*"/(log|X|)" < oc.

For r = 1, Gut and Spataru (2000a) gave the following precise asymptotics.



Theorem C Suppose that EX = 0 and EX? = 02 < co. Then, for 0 <6 <1,

1{1{1}52‘”2 Zn (logn)°P{|S,| > ey/nlogn} =
€

,U( +2) o20+2
J+1 ’

where p?°+2) s the (28 + 2)th absolute moment of the standard normal distribution.

Recently Zhang (2003) gave the precise asymptotics for all 7 > 1 and obtained the sufficient and
necessary conditions for such kind of results to hold. The purpose of this paper is to find out whether
there are the analogues in the Hilbert space setting.

In the context, let {X, X,,;n > 1} be a sequence of independent identically distributed random
variables (r.v.’s) taking values in a real separable Hilbert space (H, |- ||) with mean zero and covariance
operator ¥. Denote the largest eigenvalue of ¥ by o2, ie. o2 := sup{E[(X,y)?] : |ly|]| < 1}, where
(+,-) denotes the scalar product in H. And let d be the dimension of the corresponding eigenspace.
Let 02, 1 < i < d’ be the positive eigenvalues of ¥ arranged in a nonincreasing order and taking into
account the multiplicities. Further, if d’ < oo, put 67 = 0, i > d’. Note that we always have 0? = 02,

1<i<dando? <o? i>d. Write {e;} be a sequence of orthonormal eigenvectors corresponding to

the eigenvalues {o?}. Set S, = > ;_, Xi, n > 1. The following theorems are our main results.
Theorem 1.1 Let 1 <r < 3/2 and a > —d/2 and let a,(g) be a function of € such that

an(e)logn — 7, as n— oo and € \, V7 — 1. (1.1)
Suppose {fn} is a sequence of non-negative numbers satisfying

F, = ka ~ Z logk)?, n — oo. (1.2)
k=1

Assume
EX =0, E[(X,y)]? <oo, VycH, (1.3)
E[IX|I*(log [ X])*~"] < o0 (1.4)
and
E[(X,e)’I{|(X,e;)| > t}] = 0(@), as t — oo, Vi (1.5)
Then

i [ (= IS0 P80 > 09 (e + an(9)) |

n=1

“L(d/2)K(2)(r — 1) = T(a+ d/2) exp{—2rVr — 1}, (1.6)



where T'(-) is a gamma function and K () := [T, (1 - o2 )o?)1/2,

Letting f,, = 1 and 7 = 0 yields the following corollary.

Corollary 1.1 Let 1 <r < 3/2 and a,, = o(y/n/logn). Suppose (1.3), (1.4) and (1.5). Then

lim_[2 — (r = D] Y 0 2P{|I8ull 2 e0o(n) + an | = K(Z)(r — 1) (1.7)

eNvr—1
Conjecture We believe that Theorem 1.1 and Corollary 1.1 hold as well for r > 3/2. To get such an

improvement of the results, we think a different approach is necessary.

Theorem 1.2 Leta > —1 and a,, = O(1/logn). Suppose {f,} is a sequence of non-negative numbers

satisfying (1.2). Assume (1.3) and
EJIX]I* (log | X [)***] < oo. (1.8)
Then

lin 20 " 0 PS> 06(m)(e + an)} = (20%)7 (a4 DTEVIED, (1)
€

n=1
where Y is a Gaussian r.v. taking value in a real separable Hilbert space with mean zero and covariance

operator 3.

The proofs consist of two stages. Firstly we verify the theorems under the assumption that X
is a nondegenerate Gaussian random variable with mean zero and covariance operator ¥ in Section
2, after which, by using the truncation and approximation method, we then show the general cases.
Throughout this paper, we let K(«, 3,---), C(a, 3, - ) etc. denote positive constants which depend on
a, 3, -+ ounly, whose values can differ in different places. The notation a,, ~ b,, means that a,, /b, — 1,

as n — 0o, and a, ~ b, means that C(;lbn < an < Cyb, for some Cy > 0 and all n large enough.

2 Normal cases.

In this section, we prove Theorem 1.1 and Theorem 1.2 in the case that {X, X,,;;n > 1} are Gaussian
random variables. Let Y be a nondegenerate Gaussian mean zero r.v. with covariance operator X, say.

Denote the density of ||Y]|? by g. Our results are as follows.

Proposition 2.1 Letr > 1 and a > —d/2. Suppose a,(€) is a function of € satisfying (1.1) and {f.}

is a sequence of non-negative numbers satisfying (1.2). Then

s\li/nrlTl[EQ — (r —1))et+d/2 inr_anP{HYH > ov/2logn(e + an(a))}

n=1

=T Yd/2)K(2)(r — 1) T'(a+ d/2) exp{—2rvr — 1}, (2.1)



where T' and K(X) are as in Theorem 1.1.

Proposition 2.2 Let a > —1 and a, = O(1/logn). Suppose {fn} is a sequence of non-negative

numbers satisfying (1.2). Then we have

lim X0 37 0t L PV 2 o(e 4 a,)y2logn} = (207) " (@ + DT EY PO, (22)
I
n=1

The following lemmas will be used in the proofs of the propositions.

Lemma 2.1 Let Y be a nondegenerate Gaussian mean zero r.v. with covariance operator . Then

fory >0,

PUY I >y} ~ 240%y "2 exp{—y?/(20%)},  as y— 0, (2:3)
where A := (20%)~/2T01(d/2)K(%).
Proof. Note the result of Zolotarev (1961) that

tim {g(y)/ (s> exp{-y/(20))}) } = 4, (2.4)

Yy—00

we can get the result immediately.
Lemma 2.2 For any py > 0, there ezists a constant C,, = C(po) > 0 such that
9(y) < Cpoy?* texp{—y/(20%)}, forall y € [pg,+00). (2.5)

Proof. Notice that g(y)/(y¥/?>~' exp{—y/(20?)}) is continuous on [py, +00). By (2.4) the result

follows.
Lemma 2.3 Let a, >0, b, >0, ¢, >0, Ay, = 1y ak, By = 1_; bi. Suppose that

n
A, ~ B, and g bpcr, — 00, asn — oo.
k=1

Further, suppose one of the following conditions is satisfied:
(i) The sequence {c,} is eventually non-increasing;
(ii) The sequence {c,} is eventually non-decreasing, and

> bick & Benga. (2.6)
k=1

Then we have

n n
E QAECl ~ E bkck.
k=1 k=1



Proof. We only show the result under the condition (ii). At that case, for any 6 > 1, there exists
a ng > 1 such that for all n > ng, ¢, is non-decreasing and ' A,, < B,, < §A,,. Then by the Abel
transform, for Vn > ng

n n

Zakck = Z A(ck — cpt1) + Ancnta

k=1 k=1

no n
ZAk(Ck — Ct1) + Z 0! Bi(cr — ckt1) + 0Bncnia
k=no+1

IN

no

= Z(Ak — ailBk)(Ck —Cpt1) + ZailBk(Ck —Cpt1) + 97137L6n+1 + (60— 0*1)Bncn+1

k=1 k=1
= Z(Ak - QilBk)(Ck - CkJrl) + 61 Zbkck + (9 - 0’1)Bncn+1.
k=1

It follows that

hmsupM <O '+(O-0"HK.
n— o0 k= 1bk0k

Letting 6 — 1, we get
i1 OkCk
== — <1.

lim sup
n— 00 k 1 bkck
Similarly,
Dot WRCE o

lim inf
n—o00 Zk 1bka

The proof is completed.
Lemma 2.4 Forn > 1, let a,(e) > 0, B,(g) > 0 and f(e) > 0 satisfying
an(e) ~ Bp(e), as n— oo and € — gq,
and,
fe)Bn(e) =0, ase—eg, Vn>1.

Then

lim sup(lim inf) f Z ap(g) = limsup(lim inf) f Z Bn(e

£—€0 €—¢€o0 e—eg E—€Q

Proof. For any 6 > 1, there exist ng > 1 and a neighborhood U of gy such that
0716, (e) < an(e) < 0B, (e), for n >mng, €€ U.

Then

61 Z Bn(e) < Z an(e) <0 Z Br(e), for e € U.

n=ng n=ng n=ng

Now, the result follows easily.



Lemma 2.5 Let a,, >0, ¢, >0, and A, = 22:1 ag, for n > 1. Suppose that the sequence {c,} is

non-increasing and Apc, — 0, as n — co. Then
o0 o0
Z AnCp = Z Ap(en — cnt1)-
n=1 n=1

Proof. By the Abel transform, we can get the result immediately.

Lemma 2.6 Let a, >0, b, >0, ¢, >0, A, => ) a, and B,, = >} _, by, for n > 1. Suppose that

the sequence {c,} is non-increasing, and A, < By, VYn > 1. Then
oo (oo} oo o0
D aker <> beer and Y aper <Y bre + Bjoacy,
k=1 k=1 k=j k=j

for any j > 1, where By = 0.

Proof. From the Abel transform, it follows that

n n
Z agcr = Z Ap(cr — cryr1) + Ancnt
k=1 k=1
n n
< Y Bi(er — cks1) + Bucng1 = brck
k=1 k=1
and for any j > 1,
n n

Z akCr, = Z Ag(er — ckyr1) + Apcnyr — Aj_1cj
k=j k=j

n n
Z Br(ck — cry1) + Bpcny1 = Zbka + Bj_1¢;.
k=) k=j

IN

The results follow.

Now, we turn to prove the propositions.
Proof Proposition 2.1. Firstly, note that the limit in (2.1) does not depend on any finite terms of

the infinite series. Secondly, by Lemma 2.1 and the condition (1.1), we have

P{||Y|| > oy/2logn (e + an(e))}
~ 240 (e + a,(0)) 2Iogn) exp{~ (¢ + a,(c))” g}
~2A0%(e/2logn) =2 exp{—e?logn} exp{—2¢ca, (c)logn}

d d—2
2

~ 2% Ao (r — 1);2 (logn) "z exp{—e*logn}exp{—27vr — 1}, (2.7)
as n — 00, € \,Vr — 1, where A is as in Lemma 2.1. Also, by (1.2) and Lemma 2.3, we have

n d—2 i
A= k" *(logh) = fi ~ Bp =Y k" ?(logh)* "2 ~ n" ! (logn)* T2 (2.8)
k=1 k=1



Then we conclude that

limsup[e? — (r — 1)]*+4/2 3" nr’2fnP{||Y|| > oy/2logn(e + an(e))}
eNwWr—1 n=1

= limsup[e? — (r — 1) ‘”d/QZnT 2f,2% Ao (7’71) (1ogn) z exp{ e?logn} exp{—27Vr — 1}

s\m n=1
( by (2.7) and Lemma 2.4)

= limsup[e? — (r — 1)]oF9/2 Z An{ exp{—e?logn} — exp{—¢e?log(n + 1)}}

eN\wr—1
~2%A0d(r - 1)% exp{—27vr — 1} ( by (2.8) and Lemma 2.5)
= limsup[e? — (r — 1)]2F9/2 Z Bn{ exp{—e?logn} — exp{—c?log(n + 1)}}
eNwvr—1 n=1
~2%Aad(r - 1)% exp{—27'\/r -1} ( by (2.8) and Lemma 2.4)
= limsuple? — (r — ‘”d/2 Zn (logn)*~ 14d/2 exp{ — g2 logn}
eNVTr—1
2% Ag? (r— )dT exp{—27'\/r -1} ( by (2.8) and Lemma 2.5)
= limsuple? — (r —1)]2+%/2 Z/ ~2(log x)a—1Hd/2 exp{ — &2 logx}dx
eNWVr—1
2% Ao (r— I)T exp{—27vr — 1} ( by Lemma 2.4)

= limsup[e? — (r — 1)]“+d/2/ "2 (log x)a~1+4/2 exp{ —e? logx}dm
eNWVr—1 e

Q%Aod(r - 1)% exp{—27vr — 1}
= limsupl[e? — (r — 1)]a+d/2/ yool+d/2 eXp{ N (52 —(r— 1))y}dy
= L
2% 40 (r — 1) exp{-27Vr =1}
[ g e ot
€ r—1Jes—(r—
= I Yd/2)K(E)(r - 1) 7 T(a + d/2) exp{—2rr — 1}.

Similarly, we can get

liminf [62 — (r — 1)]T 2 " 2 £,P Y] > 04/21 n
Jiminf [~ (= ]2 Y0 (V] > 0/ Togn(e + an(e)) }

= I Yd/2)K(E)(r - 1)F T(a + d/2) exp{ -2V — 1}.

Then (2.1) is proved.

Proof Proposition 2.2. Without losing of generality, we can assume that |a,| < 79/logn, 70 > 0.

Fix 0 < 6 < 1. For any 0 < & < §/2, if €2 > 079/ logn, then

To

20% (e — 10/ logn)? logn > 202579 (1 — )2 > 02079/2 > 0.

dlogn



Then by Lemma 2.2,

Cn
< 2|p
<2

2
<
<

for any 0 < € < §/2 small enough and n with €2 > §79/ logn,

= [P{Ivll = oev/2l0gn} — P{IVI| = (e + an) V2Togn }|
{12 e+ ) V2iogn )~ P{IVI > o(c — 1 20) /2108 n

log
202 (e470/ log n)? log n

g(z)dz

o2(e—7o/logn)?logn

202 (e470/ log n)? logn
C/ 212 exp{—2/(20%)}d=
2

o2(e—70/logn)?logn

202 (e4+70/ logn)? logn

Cexp{—c?logn} 24271,

202(e—71o/logn)?logn

Noting that for d > 2,

(o < Cexp{—£®logn}{20%(e + l)2 log n}d/z_l do?Toe

logn
< Cexp{—¢’logn}{(e+ g)Qlogn}d/g_1 e
< Ce?texp{—c?logn}(logn)¥/?1,
and, for d =1,
Cn < Cexp{—£? logn}{202 (5 — %)2 logn}fl/2 -doroe
ogn
< Cexp{—c®logn}{(e — %)2 logn}fl/2 €
< Cexp{—e?logn}(logn)~'/2
So we have

(o < Ce¥Lexp{—e?logn}(logn)?/2~1

for all d > 1. Hence, for any 0 < § < 1 and each a > —1,

IN

IN

IN

Eh{‘l'(l) 62(044*1) Z nflfncn
n:e2>819/logn

Cii{% g2atd+l Z n~ ! f, exp{—e?logn}(logn)¥/?~1
n:ie2>819/logn

C il{% g2atdtl Z n~ (logn)®T4? ! exp{—c?logn}
n:e2>419/ logn

(by Lemma 2.6)

e 1
C lim g2atdt! / —(log x)‘”%*l exp{—¢e?log z}dx
N0 exp{d7o/2} ¥

C lim 5/ yotet exp{—y}dy = 0.
N0 S




Also,

N0 n:e2<8t9/logn n:e2<619/logn

< C 1111(1)5 (a+1) Z n~'(logn)* (by Lemma 2.3)

- n:e2<819/ logn

exp{d79/%} 1

< Clim 52(‘”'1)/ —(log z)*dz

e\.0 e T

) 870 /€2 C T

< Cl (a “dy = ——(079)" 0 0 — 0.
< 51{%5 /1 yrdy = ———=(0m)*" =0, as 6 —

It follows that

gl\‘r% 52(a+1) 7; nflfncn =0.

By Lemma 2.3, we have

A;L::zn:kflfka'. Zk (log k)®
k=1

Hence, for any a > —1 and d > 1,

lim sup e2(¢+1) Zn_lf P{||Y|| >o(e+ an)\/2logn}

e\.o0 n—1
= limsupe2(@+?) Znilfn {||Y||ZU€\/210gn} (by (2.9))
e\.0

= limsupe?(@+V ZA; {P{HYH > gey/2logn} — P{||Y]| > oe/2log(n + 1)}}
eno n=1

(by Lemma 2.5)

= limsupe2(@t?) ZB [P{HYH > oey/2logn} — P{||Y]| > oe/2log(n + 1)}}
eNo n=1

(by (2. 10) and Lemma 2.4)

= hmsup52(a+1)2n (logn)*P{||Y|| = oe+/2logn}

eN\.0 n—1
(by Lemma 2.5)

= limsupe? “+1)Z/ Y(log z) )*P{|IY]| > oe/2logz }dx

N0
(by Lemma 2.4)

= limsupEQ(“H)/ z"(logz)*P{||Y|| > oe\/2log x}da
e\0 e

o0

o _2(a+1) -1 < 9 Tim <2(a+1) -1
lim e Z N~ foln < 2&11{%5 Z n" " fn

(2.10)

= limsup€2(a+1)/ yP{Y | = oe\/2y}dy = 2_“0_2“_21imsup/ ZHP{|Y || > 2}dz
1 e\0 V2

e\.0
— (202" @D (a+ 1) EY ).

20¢

Similarly, we can get the result of "liminf”. So the proposition is now proved.

10



3  The general cases.

In this section, we will use Feller’s (1945) and Einmahl’s (1989) truncation methods to show the general
cases. Without losing of generality, we assume that ¢ = 1 in the sequel. Let p > 0, whose value will be

special in the proofs of Theorem 1.1 and Theorem 1.2 respectively. And for each n > 1and 1 < j <n,

we let
-/
X, = XX < vn/(ogn)P},  X,; = X;,; — E[X7,],
J J
—/ —/
S;zj:ZXr/m Snj:ZXni
i=1 i=1
and

X=X I{V/n/(logn)? < | X;|| < o(n)}, X, =X/, —E[XLL],
-1
XU = X;H{||1X5] > o(n)}, X = X1 — E[X[].

And also define S/ ., S!" ?Zj and 5/:] similarly. It is easily seen that under the condition (1.4),

nj’ ~njo
E[[ S ([ ([,
nn , S — 0 and il — 0, 3.1
o(n) o(n) #(n) )
as n — oo. In fact, to obtain (3.1), we only need the condition

E[IX2/1og 1] < oo.

The proofs of theorems depend on the following lemmas.
Lemma 3.1 Let &y, &, -+, &, be independent mean zero H-valued random variables such that for some

Q> 2, E||&]|9) < o0, 1 <j<n,n>1. Then for any t >0
PUIS &1 > t+ 18Q2E| S &1} < exp{—t2/(1440,)} + C1 3 EllIg 19)/42, (3:2)

j=1 j=1 j=1

where Ay, 1= sup{>_;_, E[(¢5,9)% : |yl <1} and C4 is a constant depending on Q only.
Proof. See Theorem 5 of Einmahl (1993).

Lemma 3.2 Define A, := ||§:m —Sull- Letr > 1, a> —d/2 and p > 0. Suppose that the conditions
(1.8) and (1.4) are satisfied. And let {fn} be a sequence of non-negative numbers satisfying (1.2).

Then for any A > 0, there exists a constant K = K(r,a,p,\) such that
>k, < KE[| X log | X])* "] < o0, (3.3)
n=1

where

I = P{A, > i/ (logn)2, |[S],, | > Ao(n) .

11



Proof. For n > 1, let 8, = nE[||X||I{||X]| > v/n/(logn)?P}]. Then ||EZZ:1X;”|| < fBn,1<j<n
Setting
1
L={n:p,< 5\/5/(logn)2},
then we have

{An > Vn/(logn)*} C | J{X; # X);}, neL.
j=1
So for n € L,

n

< Y P{X A X Sl 2 Ao}

Jj=1

Observe that X;L 0 whenever X; # X, ., for 1 < j < n, so that for any A > 0, there exists

njo

ng = no(A) such that for n > ng and all 1 < j < n, we have
P{X; # X [0l = Ao(m) }

WHZXMJF S Xl = o)

i=j7+1

{x7

S CERAT(D v S wE M)
{x2
{

=P

< P

X1, }P{IS0all = Ad(n) — 2/ (log n)* |
< P{IXI > vi/(ogny LIS, = Aé(n) /2]

By Lemma 3.1, (1.3) and (3.1), for any Q > 2r there exist constants C; = C1(Q,A) > 0 and n =

n(A\) > 0 such that for n large enough,

P{I1S, 1l > S0}

(Ap(n)/2 — 18QE||S.,,.|))?
144A,,

nE [[| X 9T{|| X]| < f/(logn)”ﬂ
(Ao(n)/2 — 18QE|S,,,[)“
(where A/, := sup { Zj LE( ,U,y) 2yl <1} < Cn, by (1.3))

< T+ CiC0(g(n)) ¢ -nE[HXllQI{IlXHsﬁ/ﬂogm”}}

< 074 Ot (logn) T3 PO |1 X2 (log | X )" I{|| X || < v/ (log n)?}]

< exp{— }+C’Cl

< n "4+ Cn' " (log n)_%_p(Q_Qr)_“_r <Cn7", (3.4)
where 0 < v < min(n,r —1). So, by (1.2) and (1.4), we get

an 2o, <C’an 2f. - nP{HX||> Vi }-nil’

neLl (g)

r—1l—v \[] \/]T
< e n Py <1< gl )

12



< Cip{aoﬁ) X115 ot i) 2o

< Cgp{(log) X II_%};n“l—"(logn)a
(by Lemma 2.3)

< cip{ 1\/5 ~ < |Ix|| < (logé‘/?))p}jwaogj)a

< CE[IX]P) (log | X [+ 2 )]

< CE[IX|* (tog 1 X])*~"] < oc.

If n € L, then we have

1 < P{I[Shll 2 A(m) } < On ™,

by (3.4). It follows that

IN

IN

IN

IN

<

<

Z nri2fnln < C Z nr7271/fn

ngcl ngL
O3 g g P11 > ﬁ/aogm”}}
nQ,C
r—3/2—v S \/m
anln /277 £, (log n) g [I1x ”—m}}

1] < agiv(;i» 1] 302 1, log m)?

c‘zo_ojE[nXI{(1
o3 Efixirg

(by Lemma 2.3)

O 1M < 11 = g e

n=1

Vi + 1 J r—3/2—v 2+a
< (1og(j+1))P}}Z" Y57 (logn)**

n=1

CE| X2 (tog | x| >+ 2 =r=1/2)] < CE|lX|[*" (log | X[))* | < oc.

Now (3.3) is proved.

Lemma 3.3 Letr > 1, a > —d/2 and p > 0. Suppose that the conditions (1.8) and (1.4) are satisfied

and {fn} is a sequence of non-negative numbers satisfying (1.2). Then for any X\ > 0 there exists a

constant K = K(r,a,p,\) such that

where

> w2 full, < KE[| X (log | X])* "] < o0, (3.5)

n=1

11, = P{A, = v/ /(logn)?, a2 Aé(n) }

13



and A,, is as in Lemma 3.2.

Proof. Obviously,

Observe that

IES,, Il < CrE[IXI{|X]| > ¢(n)}] < Cn

Co(n)E[

< P{Ay = vi/ogn)’, 8,1 2 56 n)}
+P{IS00 > Zom) } + Pl = S0 )

logn g X
o(n) og | X]

H{|IX] > ¢(n)}] = o(é(n)),

K| X[l > ¢(n)}]

Ry
log || X]|

by (1.4). So we have

IN

IN

IN

IN

IN

IN

Zn’” 1P {0 2 S0t }<cznr 2fnzp{xw¢o}
c Zn“lfnP{Xé” 20} <03 P{IX] > o)}
n=1

CZnT lfnZP{¢ < IXI <0G+ 1)}

J

CZPM <|X[I < oG +1) Z ' fn
j=1

<.

C’ZP{gb( <|IX||<op(7+1) Z Ylogn)® (by Lemma 2.3 )

OZ P{o(j) < |X|| < ¢(j + 1) }5" (log 5)*

KE[|[X[2 log | X[)* "] < .

Recall (1.3), we get that

By Lemma 3.1, (1.2

A _SUP{ZE X,y w)?) syl < 13

IN

- sup (€] (X /o) < X1 < oo}
~E(XI{Vn/(logn)? < |X]| < é(n)}).v)°] ]l < 1}

= o(n).

), Lemma 2.6, (3.1) and (1.4), we have for any @ > 2r,
> r—2 —n A
> o2 P{IST = Som)}
" E|X] || )

) n))?
" f"( {_144 on)} ; (2(n

Q |
M

14



n

< mcinrw ) S0 1) < X < 6(7)]
< K+CZ; [(1X[191{6(j — 1) < IX]| < 6() an L ud™9(n)
< K+OZ [IX119T{6( — 1) < X < 6(5)}]
[Zn’“ 16~ (n)(logn)" +j211(logn)“f—1¢—Q(j)
< K+02:IXWH¢W4%QWN<W}]rmm%ﬁ“W2
< K+CE[||XH27'(log||X||)“"} < . (3.7)

Finally, by noticing Lemma 3.2, we complete the proof of Lemma 3.3.

Lemma 3.4 Let 1 <r < 3/2, a> —d/2 and p > 36_+2’;. Suppose that the condition (1.4) is satisfied

and {fn} is a sequence of non-negative numbers satisfying (1.2). Then we have

o0
Z n""2 fpn < 00, (3.8)

n=1

n -3 n ~/
where p, = (72253) " S0 E[IX (1.

Proof. Observe that p, < C((logn)z)f?) > E[|X}]l]*. So by (1.2) and Lemma 2.6, for 1 < r < 3/2,

we get
an_2fnpn
< Can_ann_?’/Q(logn)ﬁ-nE[||X||SI{||X|| < (lo\g{i)P}]
oonr—5/20n6 - 3 J—1 i
< O3 o >fn;E[||X ety < I < o]
S Vi—1 Vi = s
< O3 F [Be&: {m X0 < o }] 20"/ ogm)
X sy Vi-1 Vi
< C2E I = <1< (g ]
00 j—1
[an 5/2(10gn)6+a+2(logn)a]r 5/2(log])6}
- ]_1 \/5 r 2 a
< ORI gy <1< g 17 s
< CE[IX|* (log | X[)*"] < oo,

whenever p > 24 So (3.8) is proved.
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Lemma 3.5 (Einmahl, 1991) Let &1, &s, - -+ , &, be independent H-valued r.v.’s with ES; = 0, E[||&;||®] <

oo and let Y1,Ys,---,Y, be independent Gaussian mean zero r.v.’s with Cov(§;) = CouYj), j =
1,2,--- ,n. Then we have for any s,t > 0,
P{ll Zé}\l > s} < P{| ZY =5 -t} + Czt_?’z Efllg; 1%] (3.9)
j=1
and
P{ anfjll > s} = P zn:YjH >s+i}— Czt’gzn: ETlIE 1°), (3.10)
Jj=1 j=1 j=1

where Cy is a universal constant.

Now we turn to prove the theorems. Let {Y,/.} be a sequence of independent H-valued Gaussian

nj

mean zero random variables with X, := Cov(Y,;) = Cov(ynj), 1<j<n. Write T}, := Z;L 1 Yy, for

n > 1. Recall ¥ := Cov(X).

Proof of Theorem 1.1. Take p > 36fr for 1 < r < 3/2. Applying the inequality of Anderson

(1955), we get for any = € R:
P{IT, | <2} = P{IY|<2/vn},  neN, (3.11)

where Y is a Gaussian r.v. with mean zero and covariance operator 3.

Let 0 < § < y/r—1/4. For n > 1, Eq. (3.9) with s = e¢(n )— ‘FQ >Oandt—(lo‘gfn)2 > 0 and

(logn)

Eq. (3.11) yield

P{I[Sn]l > eg(n)}
= P{lISull = e9(n), A, < vin 3+ P{||Sn]| > £¢(n), A > v }

(logn) (logn)?
< RISl 2 260,80 < 4 RIS 2 22 o) 80 2 0y
< P{IS,Il = co(n) (lof) V1L,
< PUITI = 200) ~ bz} + Capa+ 1T,
< P{||Y|\Z€\/m—ﬁ}+c’gpn+ﬂn, (3.12)

for all e € (vVr—1—6,/r —1+6), where I, is defined in Lemma 3.3 with A\ = Lz_l and p,, is

defined in Lemma 3.4. If we let

al (&) = an(e) — V2/(logn)>/?.

16



Then a), () satisfies the condition (1.1) and

PLISAll = (e + an(€)é(n)} < P{IY|| = (¢ +ay,(e)v/2log n} + Copy + I,
forall e € (v/r —1—9/2,/r —1+6/2) by (3.12). So, by Proposition 2.1, Lemma 3.3 and Lemma 3.4,
it follows that

hm 2 -1 a+d/2 3 T_2fnP Sn Z¢ + n
limsuple? — (r = D]*#2 3 {1192l = 6(0) (= + an(2)) }

“d/2)K(Z)(r — 1)¥F(a +d/2) exp{—27vr — 1}. (3.13)
Now we consider the lower bound of (1.6). Firstly, we consider the finite dimension case, i.e.,

d' < co. Notice that ¥~ exists and ¥,, — ¥, as n — oo. So, we can also assume that 3,1 exists for

all n > 1. Using (3.10) instead of (3.9), similar to (3.12) we have

PS> 260)} 2 PIS.| 2 ol A < 00
o Vi N
. NG /i Vi
2 Pl 2 e6n) + G053 - P{I[Snl > ed(n) + Togn 2% 2 Togmy?)
> PUBI 2 00 + ) = POl 2 M o, A, 2 V)
> PITL 2 cb(n) + 2L} — Copo — T, (3.14)

(logn)?

foralle € (vr—1—06,v/r—1+6) and n > 1, where I, is defined in Lemma 3.2 with A = %.
Write &,, = 21/2 —1/2 and
Yo = 125 = sup |25yl /llyll- (3.15)
y#0
Then

Y1 = 1E3"EaY | < IEZH IERY I = 1l EaY -

We conclude that for any x > 0,

P{ITLI = av/n} = P{IY,[l = 2}

= P{E/227Y| = 2} > P = 27} (3.16)
Also,

2 =11 = [IZV25 22 - 1] = 13728 2 - 228, )
< IZ V(S = )T 2 < IS 2R IS0 - B

=S 120 = 2l < Cl[8n = 3l = 0(1/logn)

17



by (1.5). It follows that
T =140(1/logn). (3.17)

If we let
al(e) = (5 +an(e) + ﬁ/(logn)s/z)% —e.

Then by (3.14) and (3.16),

P{IY = (e + an(e))v/2logn} — Copp — In

PLIYI = (e + an(e)) v/ 2logn +

P{ISll = (¢ + an(e))p(n)},

2
W}} — Copp — I,

IN

forall e € (v/r—1-16/2,v/r—1+6/2) and n large enough, by the condition a,(¢) — 0 again. It

follows from Lemma 3.2, Lemma 3.4 and Proposition 2.1 that

Eli\m%[gz o 1)}a+d/2 i nr—2fnP{||Sn|| > ¢(n) (s + an(s))}

“d/2)K(E)(r — 1) T(a+ d/2) exp{—2rvr — 1}.
Hence, in the finite dimension case, the lower bound of (1.6) is proved. Now assume d’ = oo. For any
d’" > d,let Q@ : H— H be the projection onto the d’-dimensional eigenspace of o2, i = 1,...,d",
. a . . .
e, Qly) = i_1(y,e)ei, y € H. Since ||Q(y)|| < |lyll, ¥ € H, from the special case proved above, it

follows that

En\m\/glffl[g — (r—1)]e+4/2 Ti nT_anP{ 1Snll > ¢(n) (e + an(s))}

> sli\m\/?%fl[g? —(r— 1)]a+d/2 g nT*anP{HQ(Sn)H > o(n) (6 + an(s))}
> T7Yd/2)Ka (2)(r — 1) Ta+ d/2) exp{-2rVr — 1},

where Kg (X)) = H?;d+1(1 —02/0%)~1/2, Letting d” — co. we complete the proof of Theorem 1.1.

Proof of Theorem 1.2. Take p = 2. Write

qn = P{An > \/ﬁ/(logn)z}, Pn =

3 n
S E[IX; 1
j=1

Following the lines in the proof of (3.3), by (1.8) and Lemma 2.3, we have

Z n_lann = Z n_l.ann + Z n_lfnqn

frn

neLl n&L
< Zn*lfnZP{X 2 x4+ S nt g, B g
neLl ngL f
< 3 AP > Vi/ogn)) +2 3 n 2 (logm)f,E[IXI{IX]| > vt/ (1o n)”)]
neLl ngL

18



Vi Vitl
Pl <1 m}

IA
i0]s
?”

— (log j)P
+2;n 1/2(logn2fn§E{ ”-(mg@ﬁ))v”
- i NE {JT }an
+QZE[|X|\I{ X| < (log ]Zn 2 (log n)2f
= A= 10g,7+1 }nzllogn
*CiE[ Xl 1ogn x| < (10;{:)) ]gn-lﬂaogn)m
< CZP{ |_$}j(logg
+oZE[|X||I{ X < o i g
< CE[|x]? (logl\X||)2p+“] +CE[||X|| (log [| X || *e+2]
< CE[IX[*(og [|X[)**] < o0, (3.18)

by recalling p = 2. Also, using Lemma 2.6, we can get

(o]
Z nilfnpn

w2 (logn) £ S s VIm1 Vi
< anl (logn)° £ g [1x] I{(log(j_l))p<||xus(logj),,}]
_ oS [ YL VI 1S 02 loe )
= O B[N Gty < XIS g o) o owm

3 s Vi1 Vi

< O E X iy < X1 < g

{Z" 3/2(log n) 6+a+z log )5 ~3/2(log 5)°
< cZE[nxu?’f{ <Xl < o] i s
< cE[IxI? (logHX||>6+“ = CE[IIXHQ(logHXH)“*“ < co. (319)

Without losing generality, we can assume that |a,| < 1/logn. Similar to the proof of Theorem 1.1,
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we have, for n large enough and all ¢ > 0,

PLISll = (e + an)p(n)}

. Y Vi
= P{S:ll = (e +an)d(n), Ap< (log n)2}+ P{[Snll = (e + an)o(n), A, > (logn)z}

< RIS 2 EHao), Ans i) o

< LSl 2 e+ a)on) - ) +a,

< PUTI 2 (6 + an)oln) — oli) + Capa + 4,

< P{Y] > (¢ + an — V2/(logn)*?)\/2logn} + Copy, + g

< P{IY] > (¢ —2/logn)\/2logn} + Copy, + qn, (3.20)

where A, = ||§/nn — Su|l. Combing (3.18)-(3.20) and applying Proposition 2.2 yield the upper bound
of (1.9). For the lower bound, it also suffices to consider the case of the finite dimension case, i.e.,

d’ < oco. Notice that for n large enough,

P{ISull = (¢ + an)d(n)}

> P{ISull > (e +an)d(n), A, < (lo\gi)z}

> P{IS (+anot) + g s, A, Yy

> LSl 2 e+ @il + ) —a,

> T 2 (0o + i) = Capa = an

> P{IT, ]| > (¢ +2/logn)d(n)} — Copn — 4n

> P{[Y| > (e +2/logn)\/2logn} — Copy — a, (3.21)

by (3.10) and (3.16), where 7, is defined in (3.15). Notice also that v, — 1, asn — oo. Fix 1 < 0 < 2.

We conclude that for n large enough and all € > 0,

PLISKI = (e + an)d(n)}
> P{IY] > (95 +4/ logn) v2logn} — Cop,, — gn, (3.22)
by (3.21). Putting (3.18), (3.19), (3.22) together and applying Proposition 2.2 yield
lim inf £2(**+1) L. P{ISA] > "
iminf e nz::ln JnPLlISnll = (e + an)d(n)}

> 972(a+1)(a+1)71E[”Y|H2(a+1)'

Letting 8 — 1, we complete the proof of Theorem 1.2.
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