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Carleton University

running head: Em pir ic al s Appr oxim at ed Via Quant il es

We deduce a partial version of the KMT (1975) inequality for coupling the uniform
empirical process with a sequence of Brownian bridges via the construction used by Csörgő
and Révész (CsR) (1978) for their similar coupling of the uniform quantile process with
another sequence of Brownian bridges. These constructions are pivoted on the KMT
(1975, 1976) inequalities for approximating partial sums by a Wiener process (Brownian
motion).

1. I ntr oduction and r esults. Let U1, U2, · · · , be independent uniform (0, 1) random

variables (r.v.’s). For each integer n ≥ 1, define

Gn(t) := n
−1

n
∑

i=1

11{Ui ≤ t}, 0 ≤ t ≤ 1,(1.1)

=









0, if 0 ≤ t < U1,n,
k/n, if Uk,n ≤ t < Uk+1,n, 1 ≤ k ≤ n− 1,
1, if Un,n ≤ t ≤ 1,

the uniform empirical distribution function based on U1, . . . , Un via indicator function 11{·} or, equiv-
alently, on their corresponding uniform order statistics U1,n ≤ U2,n ≤ · · · ≤ Un,n, and let

αn(t) =
√
n {Gn(t)− t}, 0 ≤ t ≤ 1,(1.2)

be the corresponding uniform empirical process.

Next, define the uniform empirical quantile function as

G−1
n (t) := inf{s : Gn(s) ≥ t}, 0 ≤ t ≤ 1, G−1

n (0) := G−1
n (0+),(1.3)

=

{

U1,n, if t = 0,
Uk,n, if (k − 1)/n < t ≤ k/n, 1 ≤ k ≤ n,

i.e., G−1
n is defined to be the left continuous inverse of the right continuously defined uniform empirical

distribution function Gn, and let

un(t) =
√
n {G−1

n (t)− t}, 0 ≤ t ≤ 1,(1.4)

be the corresponding uniform quantile process.
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In his second landmark paper on invariance principles, Donsker (1952) proved that the empirical

process αn(t) converges in law to a Brownian bridge B(t) with respect to the sup norm, except for

some measurability problems that were sorted out later on (cf., e.g., Billingsley (1968, Section 18)).

Komlós, Major and Tusnády (KMT) (1975) established a sharp bound for the speed of this weak

convergence that reads as follows: On a suitable probability space for the independent uniform (0, 1)

r.v.’s U1, U2, . . ., the uniform empirical process {αn(t), 0 ≤ t ≤ 1} can be approximated by a sequence

of Brownian bridges {Bn(t), 0 ≤ t ≤ 1} such that

P
{

sup
0≤t≤1

|αn(t)−Bn(t)| > n−1/2(a log n+ x)
}

≤ be−cx(1.5)

for all integers n ≥ 1 and x > 0, where a, b and c are positive absolute constants.

It takes quite a bit of effort to arrive at (1.5) even after the KMT (1975) construction that

establishes a joint distribution for αn(·) and Bn(·). For an insightful review of the construction of

the latter joint distribution, we refer to Huang and Dudley (2001, Section 4) who study the speed of

the convergence in law of αn(t) to B(t) with respect to the p–variation norm for p ∈ (2,∞) that was
first established by Dudley (1992).

Concerning the proof of the KMT inequality (1.5) that is inequality (1.1) in Huang and Dudley

(2001), they write: “Komlós, Major and Tusnády [42] specified a joint distribution for αn and Bn,

but beyond that published very little proof of (1.1). Csörgő and Révész ([23], Section 4.4), gave

a proof in which a crucial lemma attributed to Tusnády was not proved. Bretagnolle and Massart

[6] gave a proof, complete in principle, in which several steps were sketched. For versions of the

Bretagnolle–Massart proof see also Csörgő and Horváth [16], pages 116–139, and [34]. Mason and

van Zwet [47] give an alternative proof, also applying to subintervals, in which some steps were

sketched. Mason [45] gives more details.”

We note in passing that in [23] we gave a partial proof only for having

∞
∑

n=1

P
{

sup
0≤t≤1

√
n |αn(t)−Bn(t)| > a log n

}

<∞

with some absolute positive constant a. In their proof, Bretagnolle and Massart (1989) concluded

(1.5) with a = 12, b = 2 and c = 1/6. The more detailed version of the Bretagnolle–Massart proof

in Csörgő and Horváth (1993, pages 116–139) also reproduces the same respective values for the

constants a, b, c. For details on, and discussions of, the role and significance of Tusnády’s lemma in

the proof of the KMT inequality of (1.5), we refer to Csörgő and Révész (1981), Massart (2002), and

Carter and Pollard (2004). In his 48 page manuscript, Major (2000) details the original KMT (1975)

proof of (1.5). For a bootstrapped version of (1.5) with the same optimal speed for weak convergence

we refer to Csörgő, Horváth and Kokoszka (2000).

In parallel to their approximation of αn(·) by Bn(·) as in (1.5), KMT (1975, 1976) also succeeded
in approximating partial sums Sn := X1 + · · · + Xn, n ≥ 1, S0 = 0, of independent identically

distributed random variables (i.i.d.r.v.’s) X, X1, X2, . . ., that in case of having a finite moment

generating function reads as follows: On a rich enough probability space i.i.d.r.v.’s X,X1, X2, . . . ,

with EX = 0, EX2 = 1 and EetX <∞ in a neighbourhood of t = 0, together with a standard Wiener

process {W (s), 0 ≤ s < ∞} also on it, can be so constructed that for all x > 0 and integers n ≥ 1,
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we have

P
{

sup
0≤t≤1

|S[nt] −W (nt)| > aF log n+ x
}

≤ bF ecF x,(1.6)

where the positive constants aF , bF , cF depend only on the distribution function F of X.

Building on this theorem, Csörgő and Révész (CsR) (cf. [20], [21], as well as [23], [10], [16]) proved

the following analogue of the KMT inequality (1.5): On a suitable probability space for the i.i.d.

uniform (0, 1) r.v.’s U1, U2, . . ., the uniform quantile process {un(t); 0 ≤ t ≤ 1} can be approximated

by a sequence of Brownian bridges {B1,n(t); 0 ≤ t ≤ 1} such that for all integers n ≥ 1 and x > 0,

we have

P
{

sup
0≤t≤1

|un(t)−B1,n(t)| > n−1/2(a1 logn+ x)
}

≤ b1e−c1x,(1.7)

where a1, b1, c1 are positive absolute constants.

The approximation of un(·) by B1,n(·) as stated in (1.7) is a slightly improved version of that of
CsR (1978, 1981) in that here their restriction of 0 < x ≤ cn1/2, c > 0, is dropped in favour of all

x > 0. This improvement was established in Csörgő and Horváth (1993, Theorem 3.2.1).

We note that, due to their different constructions, the respective sequences of approximating

Brownian bridges Bn(·) and B1,n(·) of (1.5) and (1.7) are necessarily different. Indeed, as we will
now see (cf. (1.12) and (1.13)), they cannot even in principle be identical sequences of Brownian

bridges, due to the asymptotic behaviour of the sum

Rn(t) := αn(t) + un(t), 0 ≤ t ≤ 1,(1.8)

of the uniform empirical and quantile processes of (1.2) and (1.4) respectively. Rn(·) is known in the
literature as the Bahadur–Kiefer process (cf. Bahadur 1966, Kiefer 1967, 1970a). One of the famous

results of Kiefer (1970a) reads

lim sup
n→∞

n1/4(log n)−1/2(log log n)−1/4 sup
0≤t≤1

|Rn(t)| = 2−1/4 a.s.(1.9)

On the other hand, as n→ ∞, (1.5) and (1.7) respectively imply

sup
0≤t≤1

|αn(t)−Bn(t)| = O(n−1/2 log n) a.s.(1.10)

and

sup
0≤t≤1

|un(t)−B1,n(t)| = O(n−1/2 log n) a.s.(1.11)

Consequently, on account of (1.9) and (1.10) we arrive at

lim sup
n→∞

n1/4(log n)−1/2(log log n)−1/4 sup
0≤t≤1

|un(t) +Bn(t)| = 2−1/4 a.s.(1.12)

while, when (1.9) is combined with (1.11), we conclude

lim sup
n→∞

n1/4(log n)−1/2(log log n)−1/4 sup
0≤t≤1

|αn(t) +B1,n(t)| = 2−1/4 a.s.,(1.13)

in lieu of the respective approximations in (1.11) and (1.10).
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On account of (1.9), resulting in (1.12) via (1.10) and in (1.13) via (1.11), it is impossible to

hope for a simultaneous coupling of αn and un à la (1.5) and (1.7) by the same sequence of Brownian

bridges. However, extending the approach that resulted in the conclusion of the CsR (1978) inequality

as in (1.7) (cf. [20], [21], as well as [23, Theorem 4.5.2], [10, Theorem 3.1.2 and Lemma 3.1.2], [16,

Theorem 3.2.1]), it is possible to establish a partial version of (1.5) (cf. (1.15)) via (1.7) on the same

probability space with relative ease. The aim of this exposition is to establish Theorem 1.1 in this

regard.

We note in passing that our proof of (1.15), just like that of (1.7) ≡ (1.14), hinges on one of

the landmark KMT (1975, 1976) inequalities for approximating partial sums by Brownian motion as

in (1.6). Furthermore, as already noted above, (1.7) via (1.9) and (1.11) leads to (1.13). Roughly

speaking, this route of concluding (1.13) rhymes well with saying that Donsker’s 1951 invariance

principle for partial sums already implies his 1952 justification and extension of Doob’s 1949 heuristic

approach to the Kolmogorov-Smirnov theorems (cf. Breiman (1968, pp. 285-287)).

T heor em 1 .1 . On a suitable probability space for the i.i.d. uniform (0, 1) r.v.’s U1, U2, . . ., there

exists a sequence of Brownian bridges {B1,n(t), 0 ≤ t ≤ 1} such that for all integers n ≥ 1 and x > 0,

we have

P
{

sup
0≤t≤1

|un(t)−B1,n(t)| > n−1/2(a1 logn+ x)
}

≤ b1e−c1x,(1.14)

and, with B2,n(·) := −B1,n(·),

P
{

max
0≤k≤n

sup
Uk,n≤t<Uk,1,n

|αn(t)−B2,n(k/n)| > n−1/2(a2 log n+ x)
}

≤ b2e−c2x,(1.15)

where ai, bi, ci, i = 1, 2, are suitable positive constants, and U0,n := 0, Un+1,n := 1.

Rem ar k 1 .1 . We note that the CsR inequalities of (1.7) and (1.14) are identical, and emphasize

that (1.15) concludes a partial view of the KMT inequality (1.5) via the sequence of Brownian bridges

of of (1.7) ≡ (1.14).

The approximations mentioned in this introduction have found wide ranging applications in

probability theory and statistics, and have inspired many further works in these subjects. For a

glimpse of this impact we may refer to Berkes and Philipp (1979), Csörgő and Révész (1981), Csörgő

(1983), M. Csörgő, S. Csörgő and Horváth (1986), CsCsHM (1986), Shorack and Wellner (1986),

Part II of the proceedings volume edited by Hahn, Mason and Weiner (1991), Csörgő and Horváth

(1993, 1997), Mason (2001), along with the many references therein. Just recently, in appreciation

of the KMT (1975) inequality of (1.5), Carter and Pollard (2004) write in their Introduction: “In

one of the most important probability papers of the last forty years, Komlós, Major and Tusnády

(1975) sketched a proof for a very tight coupling of the standardized empirical distribution function

with a Brownian bridge, a result now often referred to as the KMT, or Hungarian, construction.

Their coupling greatly simplifies the derivation of many classical statistical results – see Shorack and

Wellner [(1986), Chapter 12 et seq.], for example.” For a review of the Shorack-Wellner 1986 book

along these lines we may refer to Csörgő (1987). Carter and Pollard (2004) in their Introduction

continue with writing: “The construction has taken on added significance for statistics with its use

by Nussbaum (1996) in establishing asymptotic equivalence of density estimation and white noise

models.”
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2. P r oof of T heor em 1.1. To begin with, let U1, . . . , Un, n = 1, 2, . . ., be independent

uniform (0, 1) r.v.’s, and let E1, E2, . . . be independent exponential r.v.’s with distribution function

1 − e−x, x ≥ 0. Put Zk = E1 + · · · + Ek, k = 1, 2, . . ., and Z0 = 0. Let U1,n ≤ U2,n ≤ . . . ≤ Un,n

be the order statistics of the random sample U1, . . . , Un, n ≥ 1. Then (cf., e.g., Proposition 13.15 in

Breiman (1968), or Proposition 8.2.1 in Shorack and Wellner (1986))

{Uk,n; 1 ≤ k ≤ n} D
=

{

Zk

Zn+1
; 1 ≤ k ≤ n

}

for each n = 1, 2, . . . ,(2.1)

i.e., the indicated two vectors of random variables have the same joint distribution for each n =

1, 2, . . ..

In view of (1.1), (1.3) and (2.1), we define

G̃n(t) :=











0, if 0 ≤ t < Z1/Zn+1,

k/n, if Zk/Zn+1 ≤ t < Zk+1/Zn+1, 1 ≤ k ≤ n− 1,
1, if Zn/Zn+1 ≤ t ≤ 1,

(2.2)

and

G̃−1
n (t) := inf{s : G̃n(s) ≥ t}, 0 ≤ t ≤ 1, G̃−1

n (0) := G̃−1
n (0+)(2.3)

=

{

Z1/Zn+1, if t = 0,

Zk/Zn+1, if (k − 1)/n < t ≤ k/n, 1 ≤ k ≤ n.

Consequently, on account of (2.1), we have (cf. (1.1) and (2.2), resp. (1.3) and (2.3))

{G̃n(t); 0 ≤ t ≤ 1} D
= {Gn(t); 0 ≤ t ≤ 1} for each n = 1, 2, . . . ,(2.4)

{G̃−1
n (t); 0 ≤ t ≤ 1} D

= {G−1
n (t); 0 ≤ t ≤ 1} for each n = 1, 2, . . . ,(2.5)

and whence also

{α̃n(t) := n1/2(G̃n(t)− t); 0 ≤ t ≤ 1} D
= {αn(t); 0 ≤ t ≤ 1}(2.6)

for each n = 1, 2, . . .,

{ũn(t) := n1/2(G̃−1
n (t)− t); 0 ≤ t ≤ 1} D

= {un(t); 0 ≤ t ≤ 1}(2.7)

for each n = 1, 2, . . ., i.e., the indicated random elements of D[0, 1] as stochastic processes in t ∈ [0, 1]
are equal in distribution for each n = 1, 2, . . ..

As a fundamental first step towards the proof of Theorem 1.1, we estimate the deviations

Ãn := max
0≤k≤n

sup
Zk/Zn+1≤t<Zk+1/Zn+1

|α̃n(t)− α̃n(Zk/Zn+1)|(2.8)

= max
0≤k≤n

sup
Zk/Zn+1≤t<Zk+1/Zn+1

|α̃n(t) + ũn(k/n)| , n = 1, 2, . . . .

Lem m a 2 .1 . On the KMT (1975, 1976) probability space for having (1.6), let E, E1, E2, . . . be

i.i.d. exponential r.v.’s with mean 1, partial sums Z0 = 0, Zk = E1 + · · ·+Ek, k = 1, 2, . . ., together

with a standard Wiener process {W (s), 0 ≤ s <∞} so that for all x > 0 and integers n ≥ 1, we have

P
{

sup
0≤t≤1

|(Z[nt] − [nt])−W (nt)| > C1 log n+ x
}

≤ C2e
−C3x,(2.9)
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where the positive constants Ci, i = 1, 2, 3, depend only on the distribution function 1 − e−x of E.

Then, for all x > 0 and integers n ≥ 1, we have

P
{

Ãn > n
−1/2(a3 log n+ x)

}

≤ b3e−c3x,(2.10)

where a3, b3, c3 are suitable positive constants.

Pr oof . First we note that

Ãn ≤ 4n1/2.(2.11)

Hence, in view of (2.11), in order to obtain (2.10) for all x > 0, it suffices to prove it for all

x ≤ (C4 + 4)n, where C4 > 1 is a constant. We consider

α̃n(t)− α̃n
(

Zk

Zn+1

)

(2.12)

= n1/2
(

(G̃n(t)− t)−
(

k

n
− Zk

Zn+1

))

, 0 ≤ t ≤ 1, k = 0, 1, . . . , n,

=













n1/2(0− t) , 0 ≤ t < Z1

Zn+1
, k = 0

n1/2
((

k
n − t

)

−
(

k
n − Zk

Zn+1

))

, Zk

Zn+1
≤ t < Zk+1

Zn+1
, 1 ≤ k ≤ n−1,

n1/2
(

(1− t)−
(

1− Zn

Zn+1

))

, Zn

Zn+1
≤ t ≤ 1, k = n.

Consequently, we conclude

∣

∣

∣

∣
α̃n(t)− α̃n

(

Zk

Zn+1

)∣

∣

∣

∣
, 0 ≤ t ≤ 1, k = 0, 1, . . . , n,(2.13)

=













n1/2t , 0 ≤ t < Z1

Zn+1
, k = 0

n1/2
(

t− Zk
Zn+1

)

, Zk
Zn+1

≤ t < Zk+1

Zn+1
, 1 ≤ k ≤ n− 1,

n1/2
(

t− Zn

Zn+1

)

, Zn

Zn+1
≤ t ≤ 1, k = n,

as well as

max
0≤k≤n

sup
Zk/Zn+1≤t<Zk+1/Zn+1

∣

∣

∣

∣
α̃n(t)− α̃n

(

Zk

Zn+1

)∣

∣

∣

∣
(2.14)

≤ n1/2
{

Z1

Zn+1
∨
(

max
1≤k≤n−1

(

Zk+1

Zn+1
− Zk

Zn+1

))

∨
(

1− Zn

Zn+1

)}

= n1/2
{

E1

Zn+1
∨
(

max
1≤k≤n−1

Ek+1

Zn+1

)

∨
(

En+1

Zn+1

)}

=: ∆n,

where ∨ stands for maximum. Estimating now the latter r.v. for the sake of concluding (2.10), with
some positive constant C5 we consider

P
{

∆n > n
−1/2(C5 logn+ x)

}

(2.15)

= P

{

n1/2 max
0≤k≤n

Ek+1

Zn+1
> n−1/2(C5 log n+ x)

}

=: Pn.
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Hence, in view of (2.11) and (2.14)–(2.15), in order to verify (2.10) it suffices to show that, with some

positive constants C6, C7, we have

Pn ≤ C6e
−C7x,(2.16)

for all integers n ≥ 1 and x ≤ (C4 + 4)n, with constant C4 > 1.

We have

Pn ≤ P

{

n

Zn
max
0≤k≤n

Ek+1 > C5 log n+ x

}

(2.17)

=: P{An(x)},

P{An(x)} ≤ P{An(x), Zn ≥ n/2}+ P{Zn < n/2}(2.18)

≤ P
{

2 max
0≤k≤n

Ek+1 > C5 log n+ x
}

+ P{Zn − n < −n/2}

=: P1,n + P2,n,

where, immediately,

P1,n ≤ (n+ 1)P{E1 > (C5 log n+ x)/2}(2.19)

= (n+ 1)e−(C5/2) logn e−x/2 ≤ C8e
−C9x.

As to P2,n, on remembering that we are working on the KMT probability space for having (2.9),

we arrive at

P2,n = P{(Zn − n)−W (n)) +W (n) < −n/2}(2.20)

≤ P{|(Zn − n)−W (n)| > n/4}+ P{|W (1)| > n1/2/4}
≤ C10e

−C11n

≤ C10e
−C12x

for all x ≤ (C4 + 4)n, with C4 > 1, and C12 = C11/(C4 + 4).

Thus, via (2.19) and (2.20), we conclude (2.16), and hence (2.10) as well. 2

In view of Ãn of (2.8), we define the deviations

An := max
0≤k≤n

sup
Uk,n≤t<Uk+1,n

|αn(t)− αn(Uk,n)|(2.21)

= max
0≤k≤n

sup
Uk,n≤t<Uk+1,n

|αn(t) + un(k/n)| , n = 1, 2, . . . .

Then, on account of (2.1)–(2.7), we have

Ãn
D
= An, for each n = 1, 2, . . .(2.22)

and, consequently, the following corollary to Lemma 2.1 as well.

C or ol l ar y 2 .1 . With the positive constants of a3, b3, c3 of Lemma 2.1 we also have

P
{

An > n
−1/2(a3 logn+ x)

}

≤ b3 e−c3x(2.23)
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for all x > 0 and integers n ≥ 1.

Pr oof of T heor em 1 .1 . We have

|αn(t)−B2,n(k/n)| = |αn(t)− αn(Uk,n) + αn(Uk,n)−B2,n(k/n)|(2.24)

= |αn(t)− αn(Uk,n) +B1,n(k/n)− un(k/n)|.

Therefore,

max
0≤k≤n

sup
Uk,n≤t<Uk+1,n

|αn(t)−B2,n(k/n)| ≤ An + max
0≤k≤n

|B1,n(k/n)− un(k/n)|.(2.25)

Hence, on combining (1.7) ≡ (1.14) with (2.23), we arrive at (1.15). 2

Rem ar k 2.1. The feasibility of the identical inequalities (1.7) and (1.14) being true can be seen

via first approximating ũn by the Brownian bridges

B̃1,n(t) := n
−1/2(W (nt)− tW (n)), 0 ≤ t ≤ 1,(2.26)

with Wiener process W (·) as in (2.9) of Lemma 2.1, by writing (cf. [21], [23, Theorem 4.5.2] and

[16, Theorem 3.2.1])

ũn

(

k

n

)

− B̃1,n

(

k

n

)

= n−1/2
{(

Zk − k −W (k))− k

n
(Zn − n−W (n)

)

−k
n
En+1 +

(

n

Zn+1
− 1

)(

Zk − k −
k

n
(Zn+1 − n)

)
}

,

and keeping in mind Lemma 1 of [22] for estimating appropriate increments of a Wiener process, and

noting that we have

max
0≤k≤n

sup
(k−1)/n<t≤k/n

∣

∣

∣

∣
ũn(t)− ũn

(k

n

)
∣

∣

∣

∣

= max
0≤k≤n

sup
(k−1)/n<t≤k/n

n1/2
∣

∣

∣

∣

( Zk

Zn+1
− t

)

−
( Zk

Zn+1
− k

n

)
∣

∣

∣

∣
≤ 1/n1/2.

This approach results in a coupling of ũn and B̃1,n that is preliminary to that of un and B1,n as

in (1.7) ≡ (1.14), and on its own it yields

sup
0≤t≤1

|ũn(t)− B̃1,n(t)| = O(n−1/2 log n) a.s.(2.27)

as n→ ∞.

3. Some fur ther notes and histor ical r emar ks. The respective coupling

inequalities of (1.5) and (1.7) provide an optimal bound for the speed of the convergence in law of

αn(·) and un(·) to a Brownian bridge B(·) (cf. (1.10) and (1.11)).
Brillinger (1969) was first in studying the almost sure behaviour of α̃n with rates. Namely, based

on Strassen’s 1965 approximation of partial sums by a Wiener process (cf. [54]), he established

sup
0≤t≤1

|α̃n(t)− B̃2,n(t)| = O
(

n−1/4(log n)1/2(log log n)1/4
)

a.s.(3.1)
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as n→ ∞, with the sequence of Brownian bridges

B̃2,n(t) := n
−1/2(W̃ (nt)− tW̃ (n)), 0 ≤ t ≤ 1,(3.2)

where Brownian motion W̃ (·) is as in Strassen (1965).
The respective conclusions of (2.27) and (3.1) also imply strong theorems, but only for ũn(·) and

α̃n(·), and not for αn(·) and un(·), whose respective weak convergences can of course be also deduced
from them. As to the hinted at strong theorems, via Strassen’s 1964 functional law of the iterated

logarithm (LIL) for a standard Wiener process W (·) (cf. [53]), it can be shown for example that

lim sup
n→∞

sup
0≤t≤1

|W (nt)− tW (n)|
(n log log n)1/2

= 2−1/2 a.s.(3.3)

Consequently, on recalling the definitions of B̃1,n(·) and B̃2,n(·) (cf. (2.26) and (3.2)), via (2.27) and
(3.1) we arrive at

lim sup
n→∞

sup
0≤t≤1

|ũn(t)|/(log log n)1/2 = 2−1/2 a.s.(3.4)

and

lim sup
n→∞

sup
0≤t≤1

|α̃n(t)|/(log log n)1/2 = 2−1/2 a.s.(3.5)

It is well known that the respective LIL of (3.4) and (3.5) also hold true for un(·) and αn(·), but
the latter strong laws do not of course follow from (2.27) and (3.1), for the equalities in distribution

of (2.6) and (2.7) hold true only marginally in n.

Kiefer (1970b) was first to call attention to the desirability of viewing the empirical process αn(t)

as a two-time parameter stochastic process, a function of t and n, and that a strong approximation

theorem for αn(t) should be given in terms of an appropriate two-time parameter Gaussian process.

He also succeeded in giving the first solution to this problem (cf. Kiefer (1972)) by approximating

αn(t) by a Gaussian process whose covariance function coincides with that of
√
nαn(t), i.e., with

E
√
mαm(s)

√
nαn(t) = m ∧ n(s ∧ t − st), where ∧ stands for minimum. Preceeding this work,

Müller (1970) proved a corresponding two-time parameter weak convergence for αn(t) via using

Rényi’s (1953) exponential representation of the empirical process, and he also gave the first estimate

of the error for the convergence in distribution of certain functionals of the sequence of empirical

processes. Inspired by Kiefer’s 1972 landmark paper [39], CsR (1975a) established the first coupling

inequalities for approximating the uniform empirical process that is based on independent random

d–vectors that are uniformly distributed on Id := [0, 1]d, d ≥ 1, by d–time parameter Brownian

bridges {Bn(t), t ∈ Id, d ≥ 1}∞n=1, as well as by a separable mean zero Gaussian process K(·, ·) on
[0, 1]d × [0,∞), which is a d–time parameter Brownian bridge in its first argument and Brownian
motion in its second argument. Such a process was called a Kiefer process in CsR (1975a), and this

has endured since, quite deservedly so, on account of Kiefer’s fundamental first step in this regard in

1972. For a quick review of many further significant steps along these lines we refer to Csörgő (2002,

pages 41–45), and Horváth and Szyszkowicz, eds. (2004, pages 8–14). For example, considering

the empirical distribution on the unit cube I2 = [0, 1]2, the best available Brownian bridge type

approximation is due to Tusnády (1977) with the rate O(n−1/2(logn)2) that coincides with the KMT

(1975) strong Kiefer type invariance principle for d = 1 (cf. also Castelle and Laurent–Bonvalot

(1998)), which cannot be improved beyond (log n). By combining the latter KMT (1975) Kiefer type
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uniform strong approximation of αn(t) by K(t, n)/n
1/2 with Kiefer’s result of 1970 as in (1.9), CsR

(1975b) observed the following invariance principle for the uniform quantile process un(t):

lim supn1/4(log n)−1/2(log log n)−1/4 sup
0≤t≤1

|un(t)− n−1/2K0(t, n)| = 2−1/4 a.s.,(3.6)

where K0(·, ·) = −K(·, ·). In other words, the same Kiefer process that KMT (1975) constructed for
approximating αn(·), approximates un(·) as well as in (3.6) via (1.9). The same can be said about the
first such two-time parameter Gaussian process that was constructed by Kiefer (1972) for strongly

approximating αn(·) at the rate O(n−1/6(log n)2/3). Deheuvels (1998) showed that approximating

un(·) by any other, not for αn(·) constructed Kiefer process at a better rate than that of (3.6) is also
impossible. Thus the rate of convergence in observation (3.6) for approximating un(·) by a Kiefer
process is optimal not only for αn(·) constructed Kiefer processes, but also for any other Kiefer
process. This is to be contrasted with approximating αn(·) and un(·) respectively, both at the same
optimal rate, by two different sequences of Brownian bridges as in (1.5) and (1.7).

In conclusion we note that if X1,X2, . . . are independent random variables with a right continu-

ously defined distribution function F , and Fn is the empirical distribution function of the first n ≥ 1

of these random variables, then via (1.1) and (1.2) we have

Fn(x) = Gn(F (x)), and βn(x) :=
√
n (Fn(x)− F (x)) = αn(F (x)),(3.7)

x ∈ IR, for all n, on account of Xi
D
= F−1(Ui), i = 1, 2, . . ., where F

−1 is the left continuous inverse

of F , and if F is continuous, then

Fn(F
−1(t)) = Gn(t), and βn(F

−1(t)) = αn(t), 0 ≤ t ≤ 1,(3.8)

for all n, on account of F (Xi)
D
= Ui, i = 1, 2, . . ..

Hence, it follows by (3.8) that (1.5), (1.10), (1.15) continue to hold true for βn if F is continuous.

Moreover, when F is arbitrary, then, inserting the function F into the argument of the random

functions occuring in (1.5), (1.10), (1.15), by (3.7) and having also

sup
x∈IR

|αn(F (x))−Bn(F (x))| ≤ sup
0≤t≤1

|αn(t)−Bn(t)|(3.9)

with any one of the sequences of Brownian bridges involved in the just mentioned results, they remain

true for βn also when F is an arbitrary distribution function on the real line.

Define now F−1
n à la G−1

n of (1.3), and the natural looking quantile process γn à la un of (1.4) as

γn(t) :=
√
n(F−1

n (t)− F−1(t)), 0 ≤ t ≤ 1.

Unfortunately, there is no such immediate simple route like that of (3.8) for transforming γn into its

own corresponding uniform quantile process form

un(t) =
√
n (G−1

n (t)− t) :=
√
n (F (F−1

n (t))− t), 0 ≤ t ≤ 1,(3.10)

so that one could quickly adapt results like the ones studied in this paper for un to γn as well. Hence,

on assuming that F has a Lebesgue density function f on IR, CsR (1978) defined the general quantile

process

ρn(t) :=
√
n f(F−1(t))(F−1

n (t)− F−1(t)), 0 ≤ t ≤ 1,(3.11)
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and, based on a law of the iterated logarithm of Csáki (1977) for the standardized version of the

uniform empirical process αn, succeeded in studying ρn via its deviations from its own un as in (3.10),

under some natural conditions on F . The CsR (1978) conditions and their implications have since

been further studied and utilized, for example in CsR (1981), Csörgő (1983), Csörgő et al. (1985),

Shorack and Wellner (1986), Csörgő and Horváth (1993), Csörgő and Szyszkowicz (1998), Drees and

De Haan (1999), Csörgő and Shi (2001), Csörgő and Zitikis (2002), del Barrio et al. (2005), and in

many other works that are referred to in this selected list.
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[48] M assar t , P. (2002). Tusnády’s lemma, 24 years later. Ann. Inst. H. Poincaré Probab. Statist.
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