On the supremum of iterated local time
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Abstract

We obtain upper and lower class integral tests for the space-wise supremum of the iterated local
time of two independent Wiener processes. We then establish a strong invariance principle between
this iterated local time and the local time process of the simple symmetric random walk on the
two-dimensional comb lattice. The latter, in turn, enables us to conclude upper and lower class
tests for the local time of simple symmetric random walk on the two-dimensional comb lattice as
well.
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1 Introduction and main results
Let {W(t); t > 0} be a standard Wiener process (Brownian motion), i.e., a Gaussian process with

E(W(t)) = O, E(W(tl)W(tg)) = min(tl,tg), t,tl,tg Z 0.
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The local time process {n(z,t); € R, t > 0} is defined via
/ n(x,t)de =XMs: 0<s<t, W(s) € A} (1.1)
A

for any ¢t > 0 and Borel set A C R, where A(-) is the Lebesgue measure, and 7(-,-) is frequently
referred to as Wiener or Brownian local time.

Let n1(z,t) and n2(x,t) be two independent Brownian local times. The iterated local time is
defined by

Y(x,t) :==ni(x,n2(0,1)).

Denote

TH(t) := sgg'f(x,t). (1.2)

First we give asymptotic values for the upper and lower tails of the distribution of Y*(¢).

Theorem 1.1 As z — oo

. 911/3,2/3 3,4/3
and as z — 0,
422 * G(s)
P(T*(t) < 2t'/%) ~ / d 1.4
() <=~ oS [T s (14)

for allt > 0, where

G(s) =P <sup n(z,1) < 5) .

zeR

Note that an explicit formula for G(s) in terms of Bessel functions is given in Cséki and Foldes [9].
The following integral tests are obtained.

Theorem 1.2 Let f(t) > 0 be a non-decreasing function and put

I(f) == /100 @exp <—25—3/3f4/3(t)> dt.

Then
P(Y*(t) > tY4f(t) i.0. as t — 00) =0 or 1

according as I(f) converges or diverges.



Theorem 1.3 Let g(t) > 0 be a non-increasing function and put

oo 2
J(g) ::/1 I g

t

Then
P(Y*(t) < tY%g(t) i.0. as t — 00) =0 or 1

according as J(g) converges or diverges.

In particular, we have the following law of the iterated logarithm:

T* 95/4
lim sup ®) =

oY A loglog )34 334 %

To compare the above results with similar integral tests for Y(0,t), note that {n(0,¢); ¢ >
0} has the same distribution as {supg<,<; W(s); t > 0}. Consequently {Y(0,t); ¢ > 0} has the
same distribution as {supgegs<; Wi1(n2(0,5)); t > 0}, or, as easily seen, the same distribution as
{supg<s<; W1(Wa(s) v 0); t > 0}. From Bertoin [2] we obtain the following integral tests.

Theorem A Put o ;2/3
10 [ e (- 2 0) ar

t

J(g) = /loo 90 g

t

Then
P(Y(0,t) > tY/4f(t) i.0. as t — c0) =0 or 1

according as f(f) converges or diverges. Moreover,
P(Y(0,t) < tY4g(t) i.0. as t — o0) =0 or 1

according as J(g) converges or diverges.
In particular, we have the same law of the iterated logarithm as for Y*(¢):

T 25/4
lim sup ©.%) = a.s.

oo t1/4(loglogt)3/4 — 33/4

In the subsequent sections the proofs of Theorem 1.1, 1.2 and 1.3 will be given. In Section 5 we
apply the results for the local time of the simple random walk on the 2-dimensional comb.

In the proofs unimportant constants of possibly different positive values will be denoted by
¢, Co, C1, C2-



2 Proof of Theorem 1.1

Since
(@) _ ni(m200,t)) [m2(0,1)
o 0,02V e

it has the same distribution as 77 (1)+/|N|, where nj(s) = sup,cr m(x,s) and N is a standard
normal random variable independent of nj(1). Hence, denoting by ¢ the standard normal density,

P(Y*(t) > 2tY/%) = 2/000 (1 ~G (\%)) o(u) du. (2.1)

For the upper tail of G we have (see Cséki [5])

1-G(z) ~ 4\/gzexp <_Z2—2> . 2 — oo (2.2)

Now split the integral in (2.1) into three parts:

) 22/3 /2 222/3 )
/ 2/ +/ +/ =11+ 1r+I3.
0 0 22/3 /2 222/3

Using (2.2), it is easy to see that

It < c(1— G(222*%)) < ez*Pexp(—2*%),

I3 < C/ (u)du < cexp(—22"%),
2

22/3

so I; and I3 are negligible compared to (1.3). For I we can use (2.2) and hence

s 27 22 u? 16243 V2 A8 11 4
I ~ — — —— = — | du= —-—— = dv.
T /z2/3/2 \/aexp< u 2 > T /1/\/§exp 2 <U2 i > °

The asymptotic value of this integral can be obtained by Laplace’s method (cf., e.g., de Bruijn [3])

\/%efAh(vo)
N (w0)

, A — 00,

b
/ exp(—Ah(v)) dv

where vg is the place of the minimum of h in (a,b), i.e., h/(vg) = 0. Applying this, a straightforward
calculation leads to (1.3).
To see (1.4), we have similarly

P(T*(t) < 2tY%) =2 /OOO G (\/%) o(u) du = 42 /OOO %gp <§—2> ds.



This integral is finite, since
24
G(s) ~ —— 0
(s) cexp( 82>, s — 0,
where j; is the smallest positive zero of the Bessel function Jy(-) (cf. Csaki and Foldes [9]).
Since p(22/s%) < (0), we have

P(T*(t) < otY/4) ~ 4225(0) /O h

by the dominated convergence theorem. This completes the proof of Theorem 1.1. O

3 Proof of Theorem 1.2

From Shi [13] we have the following result.
Lemma A Let f be a function as in Theorem 1.2. Put Ty =1,

1
Thoir = T <1+4—/3>, k=1,2,...,
i

where fi, = f(Ty). Then I(f) < oo if and only if
o ,2/3 3 43
ka/ exp (——25/3 k/ ) < 00
k=1

First we prove the convergence part of Theorem 1.2. Assume that I(f) < oo and define the
events

Ak = {T*(Tk+1) > Tkl/4fk}
It follows from Theorem 1.1 that

-1/3
3 1

Using the inequality
U

(I+u)™ P >1— g,

with u = fk_4/3, we obtain further

3
P(Ag) < efy exp <_Wf:/ 3) |



which is summable by Lemma A. Hence P(Agi.0.) =0, i.e., for large k£ we have almost surely
T*(Th1) < T F(Th)-
But for T, <t < T4, i.e., for large ¢
T*(t) < T(Ten) < T/ (T) < 144 (2),

proving the convergence part.
For the divergence part, we follow the proof in [5]. Without loss of generality we may assume

(loglog #)** < f(t) < (2loglogt)*/*

and, as easily seen,
(log k/2)** < fi < (2log k)*/*.

In the proof we also use the inequality

T 1 —(0—k)
k

¢
Now assume that I(f) = oo, and define the events

By = {1} fi < Y1) < T £,

where fi = f(T}). It follows from Theorem 1.1 that

4/3 1/6 4/3 1/3
3 T, 3 T,
P(Bk)chs/?’exp (— 2‘]}/3 ) [1_ < l}:l> exp <_ 2‘];]9/3 << l}:l> _1>>] .

It is readily seen that limg_,oo Ty1/7T)k = 1, and

so there is a positive constant ¢ such that

» Y
P(By) = cfy exp <_ 25k/3 > ’

and hence by Lemma A we have ), P(By) = oc.



Next we estimate P(ByBy). Let k < ¢ and

T (T, Te) = sup (m (2, 72(0, 7)) — m(x,12(0, Tk))) -

z€R

Then, similarly to the proof in [5],

T*(Tk,Tg) < T*(Tg) < T*(Tk) + T*(Tk,Tg)

and
P(ByBe) < P(T* fi, < T*(Th) < TpL fi, YH(T2) — YT,
< P(Bk)P(Tzl/4fé ;ﬁlﬁfk <Y (T, Ty) <

But Y*(Ty, Ty) has the same distribution as Y*(7; — T}), or (T}

L) > T1/4fz /4

Ty
71/
z+1f5)

— T3)Y/4Y*(1), hence

P(ByBy) < P(By)P (T*(l) >

YA _ L/

< P(By)P (T*(l) 2 fzﬁ) < cP(By) 2/3H13,/z3 exp | —

where 11 14
Hey— T, =T
T (T =TV

Using the inequality
(1 —u)3/4 1—ul/t
<
4 (1 —u)t/4 —

we get

feT1/4 — Ik klf]
(TE _ Tk)1/4

3f4/3 4/3
25/3

<1, O<u<l,

/
1 LN\ T - T
4 (1 N Te) oA g = e s
e — g

For k 4+ 2 < ¢ we have, by straightforward calculation,

1/4 1/4 1/4 1/4
T, -1y S Tiho — Ty 1

/4 pl/d = pl/i 1/4 4/3°
T/ — e

from which

fr)



with certain constant ¢ > 0. Consequently,

P(BiBy) < cP(By) [ exp (‘clf?/ i (1 - %» |

Now, for fixed k, let
Li={: k+2<e<k+ f'%,

L2:{€2 k:—i—f;l/g<€§k+4f?/3logfg4/3},

Ls = {z: k+4f 3 10g £11° <e}.

—(t=k)
1 E>1 1_|_L >H
T, 2

If £ € Ly, then

4/3 = 4/3°
l jz/ 2]}/
ie.,
2/3 —co(l—k)
F«Z?kliﬁ Sgcfwl3k)fk e 5
consequently
> P(ByBy) < KP(By). (3.2)
el

If £ € Lo, then

—(—Fk)
LSS PR >
T, = + 4/3 ZC

J4
14
with some ¢ > 0. We have
P(ByBy) < cP(Bk)fj/3e—cof;‘/3 < ¢P(By)(log )20~/ < ¢P(By)(log k)V/2k—0/2,

But ,
(—k<af log ;" < 3,

i.e., £ < 2k, hence

4/3 4/3
{—k §4f2l<{ logfmg .
Consequently,
>" P(BrBy) < cP(By,)(log k)2k™0/2 £,/ log fo* < cP(By,). (3.3)
J2S)



If ¢ € L, then

14 1/4 —(—k—1)/4
T, -1 Toi \V* 1
i/ >1-— >1—[1+ i3 .
(Ty — Tr) 0y £

Hence, using (3.1),

4/3 —(—k—1)/4\ /3
P(B,B,) < ¢P(B,) NI/ P S
( k 5) >C ( k) ¢ ©Xp 95/3 + 4/3

l

—(t—k—1)/4\ 4/3
3,}‘?/3 1 ( 1/
95/3 I={1+ 4/3 -1
¢

L\ R
~ —21/3f21/3 (1 + i3
/

14

—k-1 1
fe

N _21/3f£4/3 exp (_6 — lz/; 1) > _21/3f;1/3 exp (—log f;l/?,) > _9l/3,
af,

It can be seen that

It follows that 43
3
P(ByBy) < cP(By) f;* exp (‘ﬁ%) < cP(By)P(By). (3.4)

On using (3.2), (3.3), (3.4) together with P(ByBy) < P(By) for £ = k,k + 1, we obtain

i i 2okl ?zﬂ P(kaé)
n—ee (> k=1 P(By))

hence from Borel-Cantelli lemma and 0-1 law we obtain P(Byi.o.) = 1, completing the proof of
Theorem 1.2. O




4 Proof of Theorem 1.3

First assume that J(g) < co. Let t; = ¥ and define the events

By, = {T*(tx) <t} g(tir1) ).
Then
P(By) < cg*(te+1),

which is well-known to be summable if J(g) < co. Hence for large k£ we have almost surely

* 1/4
(1) > 34 9(th),

and for t <t < tr4q
TH(E) > T (t) > 1 glther) > tV4g(0),

proving the convergence part.
Now assume that J(g) = co. Put t;, = 2¥ and define the events

A = {(0,10) < %% (1)},

By, = {ni(t;* g% (t)) < ;" g(t1)}.

Then P(Aji.o.) =1 (cf. Csaki [4], the proof of the divergent part of Theorem 2.1 (i) on p. 211)
and, by scaling property, P(Bg) = p > 0, independently of k. It follows from Lemma 3.1 of Csaki
et al. [7] that P(AxByi.0.) > p. Consequently, P(Y*(tx) < ti/4g(tk)i.o.) > p > 0. Now the proof
of the divergence part is complete by 0 — 1 law. O

5 Simple random walk on 2-dimensional comb

We consider a simple random walk C(n) on the 2-dimensional comb lattice C? that is obtained from
7?2 by removing all horizontal lines off the z-axis.

A formal way of describing a simple random walk C(n) on the above 2-dimensional comb lattice
C? can be formulated via its transition probabilities as follows: for (z,y) € Z?

P(Cn+1) = 2,y +1) | On) = (z,y) =5, iy #0, (5.1)

P(C(n+1) = (z+1,0) | C(n) = (,0)) = P(C(n+1) = (x,%1) | C(n) = (x,0)) = i (5.2)

Unless otherwise stated, we assume that C(0) = 0 = (0,0). The coordinates of the just defined
vector valued simple random walk C(n) on C? will be denoted by Cj(n),C2(n), i.e., C(n) :=

(C1(n), Ca(n)).

10



For a recent review of some related literature concerning this simple random walk we refer to
Bertacchi [1] and Cséki et al. [8]. In the latter paper we established a strong approximation for the
random walk C(n) = (C1(n),Ca(n)) that reads as follows.

Theorem B On an appropriate probability space for the random walk {C(n) = (Ci(n), Ca(n));
n=0,1,2,...} on C?, one can construct two independent standard Wiener processes {W1(t); t > 0},
{Ws(t); t > 0} so that, as n — oo, we have with any & > 0

n= V401 () = Wi(n2(0,n))| + 0~V 2|Co(n) — Wa(n)| = O(n~1/*+)  ass.,

where 12(0,-) is the local time process at zero of Wa(+).

Define now the local time process Z(-,-) of the random walk {C(n);n = 0,1,...} on the 2-
dimensional comb lattice C? by

E(x,n)=#{0<k<n:Ck)=x}, xe€C’n=12... (5.3)

We now introduce our next result that concludes a strong approximation of the just introduced
local time process Z((x,0),n).

Theorem 5.1 On a suitable probability space we can define a simple random walk on C? and two
independent Wiener local times n1(-,-), n2(-,-) such that as n — oo, we have for any & > 0

SEIZ) IZ2((2,0),n) — 2n1 (z,m2(0,n))| = O(n1/8+5) a.s. (5.4)

Proof. As in [8|, start with two independent simple symmetric random walks on the line
{S1(n),S2(n); n=0,1,...}
with respective local times
Ci(zyn) =#{j: 1<j<n,S;(j)==x}, i=12, z€Z, n=12...
and inverse local times
pi(N) :==min{j > py_1: Si(j) =0}, i=1,2, N=12,...

with p;(0) = 0. Assume that on the same probability space we have an i.i.d. sequence of random
variables G, Ga, ... with geometric distribution,

1

P(Glzk/’)zﬁ,

k=0,1,2,...,

that is independent of Si(-), S2(-). We may construct a simple random walk on the 2-dimensional
comb lattice C? as follows. Put Ty = G1+Ga+...Gn, N =1,2,... Forn =0,...,Ty, let C1(n) =

11



Sl(n) and CQ(TL) =0. Forn=T,+1,...,T} —|—p2(1), let Cl(n) = Cl(Tl), CQ(TL) = SQ(TL — Tl) In
general, for Ty + p2(N) < n < Tn41 + p2(N), let
Ci(n) = Si(n — p2(IV)),
CQ(’I’L) = 0,
and, for Tny1 + p2(N) <n < Ty + p2(N + 1), let
Ci(n) = C1(Tn41 + p2(N)) = S1(Tn+1),
CQ(TL) = SQ(TL—TN+1).

Then it can be seen that, in terms of these definitions for C1(n) and Cs(n), C(n) = (C1(n), Ca(n))
is a simple random walk on the 2-dimensional comb lattice C2.

First we approximate the local time Z((z,0),n) by iterated simple symmetric random walk local
time.

Proposition 5.1 On a suitable probability space we can define a simple random walk C on C? with
local time = and two simple random walks S1, S on Z with local times &1,&> such that as n — oo,
we have for any e > 0

sup I2((x,0),n) — 261 (z,£2(0,n))| = O(nY3+)  a.s. (5.5)

Proof. Introduce the following notations. For the random walk C(-) let H(n) be the horizontal
steps on the z-axis up to time n and let V'(n) be the number of vertical steps up to time n. Moreover,
let B(n) be the number of vertical visits to the z-axis up to time n. Put

=M ((2,0),n) == #{0 <k <n: Ck) = (x,0), |C1(k) — C1(k —1)| > 0, Ca(k — 1) = 0}

and
E(U)((x70)7n) = E(((L‘, 0)?”) - E(h)((x70)7n)7

i.e., the horizontal, resp. vertical, visits to the point (x,0) up to time n. Then, we have clearly
EM((x,0),n) = &i(x, H(n)),
B(n) = &(0,V(n)) = &(0,n — H(n)) = O(n'/**¢) as.,
H(n)=G1+Ga+ ...+ Gy = O(B(n)) = O(n'/**¢)  as.,
|H(n) — B(n)| = |G1+ Ga + ... + Gy — B(n)| = O((B(n))/*7%) = O(n*/*%)  as,

as n — oo. Using the increment property of simple symmetric random walk local time (cf. Révész
[12], Theorem 11.15), we get

£(0,n) — &(0,n — H(n)) = O((H(n)"***) as., n— oo,

12



and
=M ((2,0),n) = & (z, H(n)) = & (z, B(n) + O(B(n)Y?*%)) = &1(z, B(n)) + O(B(n)/4+9)
= &1(2,&(0,n — H(n))) + O(&(0,n — H(n))'/***
= &i(@, &(0,n)) + O((H (n))/**9) = &1, &(0,n)) + O(n'/**9),

almost surely, where we used that H(n) = O(n'/?%¢) a.s., n — oo.
Now we show that Z(") and Z(*) are close to each other.

Lemma 5.1 Asn — oo, we have almost surely

Sup EW((2,0),n) —EW((x,0),n)| = O(n'/**). (5.6)

Proof. By the law of the iterated logarithm we have C}(n) = O(n'/**¢) almost surely, as n — oo,
and hence it suffices to show

sup [ ((2,0),n) — E)((z,0),n)| = O(n!/5+) s, (5.7)

la|<nl/t+e

as m — 0o.
Let k(x,0) be the time of the first horizontal visit of C(-) to (z,0), and for £ > 1 let x(x,¢)
denote the time of the ¢-th horizontal return of C(-) to (x,0). Then

l
=0((2,0), 5(z,0) = 3 (EV((2,0), 5, 1)) = Z (@, 0), 52,5 — 1))

j=1
which is a sum of i.i.d. random variables with geometric distribution

(v N . , 1 :
P(:‘( )(($,0),K($,j)) - ‘:‘( )((x,O),/-i(x,] - 1)) = Z) = Fa L= 0a1’2""

By exponential Kolmogorov inequality (see Toth [14])

<m

P(max |2V ((z,0), sz, £) — €] > u) < 2exp (—%) )
Hence, we have also
U2
P(‘gjr‘lgi(n%a%(] Y ((x,0), k(xz,£) — €] > u) < 2mexp <_8_m> .
Putting u = m'/2¢, Borel-Cantelli lemma implies
max max |2 ((z,0), k(z,£)) — | = O(m'/**%)  as.

|z|<m £<m

13



as m — oQ.
Since
=M ((z,0),n) = O(n/**°) as., n— oo,

with m = n/4t¢_ we have the Lemma. O

This also completes the proof of the Proposition. O
Now Theorem 5.1 follows from strong invariance principle for local time (cf. Révész [11]) quoted
as Theorem C below, and increment results for Wiener local time (cf. Révész [12], Theorem 11.11).

Theorem C On a suitable probability space one can define a Wiener process with local time n and
a simple symmetric random walk on Z with local time £ such that as n — oo, for any € > 0 we have
almost surely

sup |{(z,n) — n(z,n)| = O(n1/4+5).
TEL

The proof of Theorem 5.1 is complete. O
Theorems 1.2, 1.3 and 5.1 imply the following Corollary.

Corollary 5.1 Let a(n) be a non-decreasing sequence of positive numbers. Then

P(supE((x,0),n) > n'*a(n) i.0.) =0 or 1
T EL

according as

> a%(n) 3a4/3(n) - B
Zl - oxp 5 00 or = 0.

Let b(n) be a non-increasing sequence of positive numbers. Then

P(supZ((z,0),n) < n'/4b(n) i.0.) =0 or 1
TEL

according as

Z (n)<ooor = Q.

n
n=1
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